orbital velocity

简明释义

卫星绕主星运行的平均速度

英英释义

Orbital velocity is the speed at which an object must travel to maintain a stable orbit around a celestial body, such as a planet or moon.

轨道速度是物体维持在行星或月球等天体周围稳定轨道所需的速度。

例句

1.Different planets have different orbital velocities due to their mass and distance from the sun.

不同的行星由于其质量和与太阳的距离具有不同的轨道速度

2.Calculating the orbital velocity is crucial for launching satellites into correct trajectories.

计算轨道速度对于将卫星发射到正确轨道至关重要。

3.If a spacecraft does not achieve the required orbital velocity, it will fall back to Earth.

如果航天器未能达到所需的轨道速度,它将会坠落回地球。

4.The orbital velocity of the International Space Station allows it to circle the Earth every 90 minutes.

国际空间站的轨道速度使其每90分钟绕地球一圈。

5.The satellite must reach a specific orbital velocity to maintain its position in space.

卫星必须达到特定的轨道速度才能保持在太空中的位置。

作文

Understanding the concept of orbital velocity is crucial for anyone interested in astronomy, physics, or space exploration. Orbital velocity refers to the speed at which an object must travel to maintain a stable orbit around a celestial body, such as a planet or a star. This concept is not only fundamental in astrophysics but also has practical applications in satellite technology and space missions.To grasp the significance of orbital velocity, we must first acknowledge the forces at play in space. When an object is launched into space, it experiences the gravitational pull of the celestial body it is orbiting. For instance, Earth’s gravity pulls satellites towards its center. However, if a satellite travels fast enough, it can counteract this gravitational force and remain in a stable orbit. This balance between gravitational force and the satellite's inertia is what defines orbital velocity.The formula for calculating orbital velocity involves the mass of the celestial body and the radius of the orbit. Specifically, the orbital velocity (v) can be calculated using the equation v = √(GM/r), where G is the gravitational constant, M is the mass of the celestial body, and r is the distance from the center of the mass to the object in orbit. This equation illustrates that the larger the mass of the celestial body, the greater the orbital velocity required to maintain a stable orbit.Different celestial bodies have different orbital velocities. For example, a satellite in low Earth orbit, such as the International Space Station, travels at approximately 28,000 kilometers per hour (17,500 miles per hour). In contrast, a spacecraft traveling to Mars will need to achieve a different orbital velocity to escape Earth's gravitational influence and enter a trajectory toward the Red Planet.Moreover, understanding orbital velocity is essential for planning space missions. Engineers and scientists must calculate the necessary speed for spacecraft to achieve their intended orbits, whether it's for communication satellites, weather monitoring, or interplanetary exploration. If a spacecraft does not reach the required orbital velocity, it may fall back to Earth or drift away into space.In addition to practical applications, orbital velocity is a fascinating topic that highlights the intricate dance of celestial mechanics. It exemplifies how physics governs the movements of objects in space and how various factors, such as distance and mass, influence these movements. The study of orbital velocity not only enhances our understanding of space but also inspires future generations to explore the cosmos.In conclusion, the concept of orbital velocity is pivotal in both theoretical and applied physics. Whether we are launching satellites, planning missions to distant planets, or simply gazing at the stars, the principles of orbital velocity remind us of the delicate balance of forces that govern our universe. As we continue to advance our knowledge and technology, mastering the concept of orbital velocity will remain essential for the future of space exploration and our understanding of the cosmos.

理解轨道速度的概念对于任何对天文学、物理学或太空探索感兴趣的人来说都是至关重要的。轨道速度是指一个物体必须以多快的速度才能维持在某个天体(如行星或恒星)周围的稳定轨道。这个概念不仅在天体物理学中是基础,而且在卫星技术和太空任务中也有实际应用。要理解轨道速度的重要性,我们首先必须承认太空中存在的力量。当一个物体被发射到太空时,它会受到所环绕的天体的引力。例如,地球的引力将卫星拉向其中心。然而,如果卫星的速度足够快,它就可以抵消这种引力并保持在稳定的轨道上。这种引力与卫星惯性之间的平衡就是定义轨道速度的关键。计算轨道速度的公式涉及天体的质量和轨道的半径。具体来说,轨道速度(v)可以通过方程v = √(GM/r)来计算,其中G是引力常数,M是天体的质量,r是从质量中心到轨道物体的距离。这个方程说明了天体的质量越大,维持稳定轨道所需的轨道速度就越大。不同的天体具有不同的轨道速度。例如,处于低地球轨道的卫星,如国际空间站,以大约28,000公里每小时(17,500英里每小时)的速度运行。相比之下,前往火星的航天器需要达到不同的轨道速度以逃离地球的引力影响并进入前往红色星球的轨道。此外,理解轨道速度对于规划太空任务至关重要。工程师和科学家必须计算航天器实现其预定轨道所需的速度,无论是用于通信卫星、天气监测还是行星间探索。如果航天器未能达到所需的轨道速度,它可能会回落到地球或漂流到太空中。除了实际应用,轨道速度还是一个迷人的话题,突显了天体力学的复杂舞蹈。它体现了物理学如何支配太空中物体的运动,以及距离和质量等各种因素如何影响这些运动。对轨道速度的研究不仅增强了我们对太空的理解,也激励着未来几代人探索宇宙。总之,轨道速度的概念在理论和应用物理学中都是关键的。无论我们是在发射卫星、计划前往遥远行星的任务,还是仅仅仰望星空,轨道速度的原理都提醒我们宇宙中支配物体运动的力量之间的微妙平衡。随着我们不断推进知识和技术,掌握轨道速度的概念将继续对未来的太空探索和我们对宇宙的理解至关重要。

相关单词

orbital

orbital详解:怎么读、什么意思、用法

velocity

velocity详解:怎么读、什么意思、用法