oblique coordinates system

简明释义

斜角坐标系

英英释义

An oblique coordinates system is a coordinate system in which the axes are not perpendicular to each other, allowing for the representation of geometric figures and transformations in a non-orthogonal manner.

斜坐标系是一种坐标系统,其中坐标轴不是相互垂直的,允许以非正交的方式表示几何图形和变换。

例句

1.In engineering, the design of certain structures requires the use of an oblique coordinates system (斜坐标系) to accurately represent angles and dimensions.

在工程中,某些结构的设计需要使用oblique coordinates system (斜坐标系) 来准确表示角度和尺寸。

2.The oblique coordinates system (斜坐标系) can be particularly useful in computer graphics for rendering objects at various angles.

在计算机图形学中,oblique coordinates system (斜坐标系) 对于以不同角度渲染物体特别有用。

3.Geologists may use an oblique coordinates system (斜坐标系) to map out geological formations that are not aligned with traditional axes.

地质学家可能会使用oblique coordinates system (斜坐标系) 来绘制与传统轴不对齐的地质构造。

4.When analyzing forces in a physics problem, it is often beneficial to switch to an oblique coordinates system (斜坐标系) for simplification.

在物理问题中分析力时,通常将其转换为oblique coordinates system (斜坐标系) 会更简化。

5.In robotics, an oblique coordinates system (斜坐标系) helps in programming movements that require precise angular adjustments.

在机器人技术中,oblique coordinates system (斜坐标系) 有助于编程需要精确角度调整的运动。

作文

The concept of an oblique coordinates system is fundamental in the fields of mathematics and physics, particularly in the study of geometry and vector analysis. Unlike the traditional Cartesian coordinate system, which utilizes perpendicular axes to define the position of points in space, an oblique coordinates system employs non-perpendicular axes. This unique approach allows for a different perspective on spatial relationships and can simplify certain calculations in various applications.In an oblique coordinates system, the axes are typically defined by vectors that are not orthogonal. This means that the angles between the axes can vary, leading to a more flexible framework for representing points in a plane or in three-dimensional space. For example, in engineering and computer graphics, using an oblique coordinates system can facilitate the modeling of complex shapes and surfaces, as it allows for a more tailored representation of the objects being studied.One of the primary advantages of using an oblique coordinates system is its ability to simplify equations that describe geometric transformations. When working with transformations such as rotations, translations, and scalings, the mathematical representations can become quite complex in a standard Cartesian framework. However, by switching to an oblique coordinates system, these transformations can often be expressed more concisely, making computations more manageable.Moreover, the oblique coordinates system is particularly useful in scenarios where the underlying geometry does not conform to traditional rectangular grids. For instance, in fields like crystallography and materials science, the atomic structures of materials may naturally align along non-orthogonal axes. By applying an oblique coordinates system, scientists can better analyze and interpret the properties of these materials, leading to advancements in material design and application.In addition to its practical applications, the oblique coordinates system also offers theoretical insights into the nature of space and dimensions. It challenges our conventional understanding of dimensionality and encourages exploration beyond rigid frameworks. This flexibility is crucial in advanced theoretical physics, where concepts such as spacetime require a nuanced approach to understanding coordinates and measurements.However, working with an oblique coordinates system does come with its challenges. The calculations involved can become more intricate, particularly when converting between coordinate systems or when determining distances and angles. As a result, a strong grasp of linear algebra and vector mathematics is essential for anyone looking to utilize this system effectively.In conclusion, the oblique coordinates system provides a powerful alternative to traditional coordinate systems, offering unique advantages in various scientific and mathematical contexts. Its ability to simplify complex transformations and accommodate non-standard geometries makes it an invaluable tool across disciplines. As technology continues to evolve, the applications of the oblique coordinates system are likely to expand, paving the way for new discoveries and innovations in our understanding of the universe.

斜坐标系的概念在数学和物理学领域中是基础,特别是在几何和向量分析的研究中。与传统的笛卡尔坐标系不同,后者利用垂直轴来定义空间中点的位置,斜坐标系采用非垂直轴。这种独特的方法允许我们从不同的角度看待空间关系,并可以简化在各种应用中的某些计算。在斜坐标系中,坐标轴通常由非正交的向量定义。这意味着轴之间的角度可以变化,从而为在平面或三维空间中表示点提供了更灵活的框架。例如,在工程和计算机图形学中,使用斜坐标系可以促进复杂形状和表面的建模,因为它允许对被研究对象进行更加量身定制的表示。使用斜坐标系的主要优点之一是能够简化描述几何变换的方程。当处理旋转、平移和缩放等变换时,标准笛卡尔框架下的数学表示可能会变得相当复杂。然而,通过切换到斜坐标系,这些变换通常可以更简洁地表达,使计算更易于管理。此外,斜坐标系在底层几何不符合传统矩形网格的情况下特别有用。例如,在晶体学和材料科学等领域,材料的原子结构可能自然沿着非正交轴排列。通过应用斜坐标系,科学家可以更好地分析和解释这些材料的特性,从而推动材料设计和应用的进步。除了其实际应用外,斜坐标系还提供了对空间和维度本质的理论见解。它挑战了我们对维度的传统理解,并鼓励超越严格框架的探索。这种灵活性在高级理论物理中至关重要,因为诸如时空等概念需要对坐标和测量有更细致的理解。然而,使用斜坐标系也带来了挑战。涉及的计算可能变得更加复杂,特别是在坐标系统之间转换或确定距离和角度时。因此,对于任何希望有效利用这一系统的人来说,牢固掌握线性代数和向量数学至关重要。总之,斜坐标系为传统坐标系统提供了一个强有力的替代方案,在各种科学和数学背景下提供了独特的优势。它简化复杂变换和适应非标准几何的能力使其在各个学科中成为一种宝贵工具。随着技术的不断发展,斜坐标系的应用可能会扩展,为我们对宇宙的理解开辟新的发现和创新之路。

相关单词

coordinates

coordinates详解:怎么读、什么意思、用法