nuclear fusion

简明释义

热核反应

英英释义

Nuclear fusion is a process in which two light atomic nuclei combine to form a heavier nucleus, releasing a significant amount of energy in the process.

核聚变是两个轻原子核结合形成一个较重的原子核的过程,并在此过程中释放出大量能量。

例句

1.Researchers believe that achieving sustained nuclear fusion 核聚变 could solve the energy crisis.

研究人员相信,实现持续的核聚变 核聚变可能会解决能源危机。

2.Scientists are researching the potential of nuclear fusion 核聚变 as a clean energy source.

科学家们正在研究核聚变 核聚变作为一种清洁能源的潜力。

3.The process of nuclear fusion 核聚变 powers the sun and other stars.

核聚变 核聚变的过程为太阳和其他星星提供能量。

4.Many countries are investing in nuclear fusion 核聚变 technology to reduce reliance on fossil fuels.

许多国家正在投资于核聚变 核聚变技术,以减少对化石燃料的依赖。

5.The ITER project aims to demonstrate the feasibility of nuclear fusion 核聚变 as a large-scale energy source.

国际热核聚变实验堆(ITER)项目旨在证明核聚变 核聚变作为大规模能源来源的可行性。

作文

Nuclear fusion is a process that powers the sun and other stars, where two light atomic nuclei combine to form a heavier nucleus, releasing an enormous amount of energy in the process. This phenomenon occurs under extreme temperature and pressure conditions, which are typically found in the core of stars. The most common fusion reaction involves isotopes of hydrogen: deuterium and tritium. When these isotopes fuse, they produce helium and a neutron while releasing energy according to Einstein's mass-energy equivalence principle, represented by the famous equation E=mc². This process is not only fascinating from a scientific perspective but also holds significant potential for providing a sustainable and clean energy source for humanity.The quest for harnessing nuclear fusion (核聚变) as a practical energy source has been ongoing for several decades. Unlike nuclear fission, which splits heavy atoms and produces radioactive waste, nuclear fusion (核聚变) promises to produce minimal waste and has an almost limitless fuel supply. The primary fuels for fusion reactions, such as deuterium, can be extracted from seawater, making it an attractive alternative to fossil fuels and conventional nuclear power.However, achieving controlled nuclear fusion (核聚变) on Earth presents numerous scientific and engineering challenges. The temperatures required for fusion to occur are in the range of millions of degrees Celsius, which is far beyond what current materials can withstand. Additionally, confining the superheated plasma long enough for fusion to take place requires advanced magnetic confinement techniques, such as those used in tokamaks or stellarators. Researchers around the world are actively working on various approaches to achieve sustained fusion reactions, including inertial confinement and magnetic confinement methods.One of the most notable projects in this field is the International Thermonuclear Experimental Reactor (ITER), currently under construction in France. ITER aims to demonstrate the feasibility of nuclear fusion (核聚变) as a large-scale and carbon-free source of energy. If successful, ITER could pave the way for future commercial fusion reactors, potentially transforming the global energy landscape.In addition to its environmental benefits, nuclear fusion (核聚变) could significantly enhance energy security. With abundant fuel sources available, countries would have less dependence on imported fossil fuels, thus reducing geopolitical tensions related to energy resources. Furthermore, fusion energy could help mitigate climate change by providing a clean alternative to carbon-emitting energy sources.Despite the promise of nuclear fusion (核聚变), there are still many hurdles to overcome before it becomes a viable option for everyday energy needs. Significant investments in research and development are essential to solve the technical challenges associated with achieving stable and efficient fusion reactions. The scientific community remains optimistic, however, that with continued effort and collaboration, nuclear fusion (核聚变) could one day provide a nearly inexhaustible source of clean energy for generations to come.

核聚变是一个为太阳和其他恒星提供能量的过程,其中两个轻原子核结合形成一个更重的原子核,并在这个过程中释放出巨大的能量。这种现象发生在极端温度和压力条件下,通常存在于恒星的核心。最常见的聚变反应涉及氢的同位素:氘和氚。当这些同位素聚合时,它们会产生氦和一个中子,同时根据爱因斯坦的质量-能量等价原理释放出能量,表示为著名的方程E=mc²。这个过程从科学角度来看不仅令人着迷,而且对人类提供可持续和清洁能源的潜力也具有重要意义。利用核聚变nuclear fusion)作为一种实用能源的探索已经进行了几十年。与核裂变不同,核裂变是分裂重原子并产生放射性废物,而核聚变nuclear fusion)承诺产生最少的废物,并且几乎有无限的燃料供应。聚变反应的主要燃料,如氘,可以从海水中提取,这使其成为化石燃料和传统核电的有吸引力的替代品。然而,在地球上实现受控的核聚变nuclear fusion)面临着许多科学和工程挑战。聚变发生所需的温度在数百万摄氏度的范围内,这远远超出了当前材料能够承受的范围。此外,足够长时间地约束超热等离子体以进行聚变反应需要先进的磁约束技术,例如在托卡马克或恒星器中使用的技术。世界各地的研究人员正在积极研究各种方法,以实现持续的聚变反应,包括惯性约束和磁约束方法。该领域最显著的项目之一是国际热核实验反应堆(ITER),目前正在法国建设中。ITER旨在证明核聚变nuclear fusion)作为一种大规模和无碳的能源来源的可行性。如果成功,ITER可能为未来商业聚变反应堆铺平道路,潜在地改变全球能源格局。除了环境利益外,核聚变nuclear fusion)还可以显著增强能源安全。由于燃料来源丰富,各国将减少对进口化石燃料的依赖,从而降低与能源资源相关的地缘政治紧张局势。此外,聚变能源可以通过提供清洁的替代碳排放能源来帮助缓解气候变化。尽管核聚变nuclear fusion)的前景广阔,但在它成为日常能源需求的可行选择之前,仍有许多障碍需要克服。需要在研究和开发方面进行重大投资,以解决与实现稳定和高效聚变反应相关的技术挑战。然而,科学界仍然保持乐观,认为随着不断的努力和合作,核聚变nuclear fusion)有一天可能为后代提供几乎取之不尽的清洁能源。

相关单词

nuclear

nuclear详解:怎么读、什么意思、用法

fusion

fusion详解:怎么读、什么意思、用法