non-harmonic constants
简明释义
非调和常数
英英释义
例句
1.The model was adjusted to include non-harmonic constants 非谐常数 to improve its predictive accuracy.
该模型进行了调整,以包含非谐常数,以提高其预测准确性。
2.Engineers must account for non-harmonic constants 非谐常数 when designing systems that rely on precise oscillations.
工程师在设计依赖精确振荡的系统时,必须考虑非谐常数。
3.In the study of waveforms, we often encounter non-harmonic constants 非谐常数 that affect the overall shape of the signal.
在波形研究中,我们经常遇到影响信号整体形状的非谐常数。
4.When analyzing sound waves, the presence of non-harmonic constants 非谐常数 can lead to unexpected results in frequency response.
在分析声波时,非谐常数的存在可能导致频率响应中出现意外结果。
5.The non-harmonic constants 非谐常数 in this equation indicate deviations from the ideal harmonic behavior.
这个方程中的非谐常数表示偏离理想谐波行为的情况。
作文
In the realm of mathematics and physics, particularly in the study of wave phenomena and harmonic analysis, the term non-harmonic constants refers to specific values or parameters that do not conform to the patterns typically associated with harmonic functions. Harmonic functions are those that can be expressed as a sum of sine and cosine functions, exhibiting periodic behavior and regularity. However, when we introduce non-harmonic constants, we step outside this orderly framework, leading to more complex and less predictable behaviors.Understanding non-harmonic constants is crucial for various applications, including signal processing, acoustics, and even quantum mechanics. For instance, in signal processing, when analyzing signals that contain both harmonic and non-harmonic components, the presence of non-harmonic constants can significantly affect the overall signal characteristics. These constants may represent frequencies that do not fit neatly into the harmonic series, resulting in interference patterns that are not easily interpreted.Moreover, in the context of physical systems, non-harmonic constants can arise in situations where forces acting on a system do not produce simple harmonic motion. For example, consider a pendulum subjected to varying gravitational forces or a spring that does not follow Hooke's law perfectly. In such cases, the motion of the system can be described by equations that include non-harmonic constants, indicating the influence of external factors or inherent material properties that deviate from ideal conditions.The significance of non-harmonic constants extends beyond theoretical considerations; they have practical implications in engineering and technology. In the design of musical instruments, for example, understanding how non-harmonic constants interact with harmonic frequencies can help in crafting instruments that produce desired sound qualities. Similarly, in architectural acoustics, recognizing the role of non-harmonic constants in sound wave propagation can inform better designs for concert halls and auditoriums, ensuring that sound reaches the audience in a pleasing manner.In summary, while harmonic functions provide a foundational understanding of wave behavior, the introduction of non-harmonic constants allows for a richer and more nuanced exploration of complex systems. These constants challenge our perceptions of order and predictability, revealing the intricate dance between harmony and chaos in the natural world. As we continue to delve into the mysteries of mathematics and physics, the study of non-harmonic constants will undoubtedly play a vital role in expanding our knowledge and capabilities across various fields of science and engineering.
在数学和物理的领域,尤其是在波现象和谐波分析的研究中,术语非谐常数指的是不符合典型谐波函数模式的特定值或参数。谐波函数是那些可以表示为正弦和余弦函数之和的函数,表现出周期性行为和规律性。然而,当我们引入非谐常数时,我们便超出了这个有序框架,导致更复杂且不可预测的行为。理解非谐常数对各种应用至关重要,包括信号处理、声学,甚至量子力学。例如,在信号处理中,当分析包含谐波和非谐波成分的信号时,非谐常数的存在可能会显著影响整体信号特征。这些常数可能代表不完全符合谐波系列的频率,从而导致难以解释的干涉模式。此外,在物理系统的背景下,非谐常数可能出现在作用于系统的力不产生简单谐波运动的情况下。例如,考虑一个受到变化重力作用的摆或一个不完全遵循胡克定律的弹簧。在这种情况下,系统的运动可以通过包含非谐常数的方程来描述,表明外部因素或固有材料属性对理想条件的偏离。非谐常数的重要性超越了理论考虑;它们在工程和技术中的实际应用也很广泛。例如,在乐器设计中,理解非谐常数如何与谐波频率相互作用可以帮助制作出产生所需音质的乐器。同样,在建筑声学中,认识到非谐常数在声波传播中的作用可以为音乐厅和礼堂的更好设计提供依据,确保声音以令人愉悦的方式传达到观众。总之,虽然谐波函数提供了对波动行为的基础理解,但引入非谐常数使我们能够更丰富、更细致地探讨复杂系统。这些常数挑战了我们对秩序和可预测性的看法,揭示了自然界中和谐与混沌之间的复杂舞蹈。随着我们继续深入探索数学和物理的奥秘,研究非谐常数无疑将在扩大我们在各个科学和工程领域的知识和能力方面发挥重要作用。
相关单词