middle ordinate

简明释义

中线纵坐标

英英释义

The middle ordinate is a term used in geometry and engineering to refer to the average value of the ordinates (y-values) of a curve or function over a specified interval, often used in the context of calculating areas under curves.

中间纵坐标是几何和工程中使用的术语,指在指定区间内曲线或函数的纵坐标(y值)的平均值,通常用于计算曲线下的面积。

例句

1.When designing highways, engineers often calculate the middle ordinate 中间纵坐标 to determine the sight distance for drivers.

在设计高速公路时,工程师通常计算中间纵坐标 中间纵坐标 以确定驾驶员的视距。

2.The middle ordinate 中间纵坐标 is crucial in the integration process for finding the centroid of irregular shapes.

在寻找不规则形状的质心的积分过程中,中间纵坐标 中间纵坐标 是至关重要的。

3.In surveying, the middle ordinate 中间纵坐标 helps in calculating the volume of earthworks needed for construction projects.

在测量中,中间纵坐标 中间纵坐标 有助于计算建筑项目所需的土方量。

4.To analyze the data accurately, statisticians often refer to the middle ordinate 中间纵坐标 when evaluating histograms.

为了准确分析数据,统计学家在评估直方图时常常提到中间纵坐标 中间纵坐标

5.In civil engineering, the calculation of the area under a curve often involves the use of the middle ordinate 中间纵坐标 to estimate the average value.

在土木工程中,曲线下的面积计算通常涉及使用中间纵坐标 中间纵坐标 来估算平均值。

作文

In the field of geometry and calculus, the concept of the middle ordinate (中位弦) plays a crucial role in understanding areas under curves. The middle ordinate refers to the length of a line segment drawn from the midpoint of a base to the curve above it. This measurement is particularly useful when calculating the area of irregular shapes or when approximating the area under a curve using numerical methods. To illustrate the significance of the middle ordinate, consider the scenario of estimating the area under a parabolic curve. When we divide the area into smaller sections, we can use the middle ordinate of each section to approximate the total area more accurately. By measuring the height of the curve at the midpoint of each interval, we can create rectangles that fit under the curve, leading to a better estimation of the area. This method is known as the middle rectangle rule, which is a fundamental technique in integral calculus.The middle ordinate is not only applicable in mathematics but also finds its relevance in various fields such as engineering, physics, and economics. For instance, civil engineers often use the middle ordinate when designing roads and bridges. By analyzing the curves of roadways, they can determine the safe and efficient dimensions needed for construction. Similarly, in physics, the middle ordinate can help in understanding the dynamics of moving objects by providing insights into their trajectories.Moreover, the middle ordinate can serve as a tool for visualizing data in statistics. When graphing a set of data points, the middle ordinate can help identify trends and patterns. By drawing lines to represent the middle ordinate of different data segments, analysts can gain a clearer understanding of the relationship between variables. This visualization aids in making informed decisions based on empirical evidence.In conclusion, the middle ordinate (中位弦) is an essential concept that transcends pure mathematics and finds applications across various disciplines. Its ability to simplify complex problems and provide accurate estimations makes it invaluable in both theoretical and practical scenarios. Understanding the middle ordinate allows students and professionals alike to tackle challenges with confidence and precision. As we continue to explore the intricacies of mathematics and its applications, the middle ordinate remains a fundamental tool in our analytical arsenal.

在几何和微积分领域,中位弦的概念在理解曲线下的面积方面发挥着至关重要的作用。中位弦是指从底边的中点到其上方曲线的线段长度。这一测量在计算不规则形状的面积或使用数值方法近似曲线下的面积时特别有用。为了说明中位弦的重要性,考虑估算抛物线曲线下的面积的情景。当我们将面积划分为较小的部分时,可以使用每个部分的中位弦来更准确地估算总面积。通过测量曲线在每个区间的中点处的高度,我们可以创建适合于曲线下方的矩形,从而更好地估算面积。此方法被称为中矩形法,这是积分微积分中的一种基本技术。中位弦不仅适用于数学,还在工程、物理和经济等多个领域中找到了相关性。例如,土木工程师在设计道路和桥梁时经常使用中位弦。通过分析道路的曲线,他们可以确定建设所需的安全和有效的尺寸。同样,在物理学中,中位弦可以帮助理解运动物体的动力学,通过提供对其轨迹的洞察。此外,中位弦还可以作为统计数据可视化的工具。在绘制一组数据点时,中位弦可以帮助识别趋势和模式。通过绘制线条以表示不同数据段的中位弦,分析人员可以更清楚地理解变量之间的关系。这种可视化有助于基于实证证据做出明智的决策。总之,中位弦是一个超越纯数学的基本概念,在各个学科中都有应用。它简化复杂问题并提供准确估算的能力,使其在理论和实践场景中都具有不可或缺的价值。理解中位弦使学生和专业人士能够自信而精准地应对挑战。随着我们继续探索数学及其应用的复杂性,中位弦仍然是我们分析工具箱中的基本工具。

相关单词

middle

middle详解:怎么读、什么意思、用法

ordinate

ordinate详解:怎么读、什么意思、用法