non-dimensional number
简明释义
无因次数
英英释义
例句
1.The Mach number is a non-dimensional number 无量纲数 that represents the ratio of the speed of an object to the speed of sound in the surrounding medium.
马赫数是一个无量纲数 non-dimensional number,表示物体速度与周围介质中声速的比率。
2.Engineers often use the Froude number as a non-dimensional number 无量纲数 to compare inertial and gravitational forces in fluid systems.
工程师们常常使用弗劳德数作为一个无量纲数 non-dimensional number,来比较流体系统中的惯性和重力作用。
3.In fluid dynamics, the Reynolds number is a crucial non-dimensional number 无量纲数 that helps predict flow patterns in different fluid flow situations.
在流体动力学中,雷诺数是一个关键的无量纲数 non-dimensional number,它有助于预测不同流体流动情况下的流动模式。
4.The Strouhal number is another important non-dimensional number 无量纲数 used to describe oscillating flow mechanisms.
斯特劳哈尔数是另一个重要的无量纲数 non-dimensional number,用于描述振荡流动机制。
5.In heat transfer studies, the Nusselt number serves as a non-dimensional number 无量纲数 that correlates the convective and conductive heat transfer.
在热传递研究中,努塞尔数作为一个无量纲数 non-dimensional number,关联对流和导热传递。
作文
In the field of engineering and physics, the concept of a non-dimensional number plays a crucial role in simplifying complex equations and understanding various phenomena. A non-dimensional number is a quantity without any physical units, which allows for the comparison of different systems regardless of their scale or the units used to measure them. This characteristic makes non-dimensional numbers particularly useful in fluid dynamics, thermodynamics, and other branches of science and engineering.One of the most common examples of a non-dimensional number is the Reynolds number, which is used to predict flow patterns in different fluid flow situations. The Reynolds number is calculated by taking the ratio of inertial forces to viscous forces, providing insights into whether a flow will be laminar or turbulent. By using a non-dimensional number like the Reynolds number, engineers can design systems that operate efficiently under varying conditions without needing to conduct exhaustive experiments for every possible scenario.Another example is the Nusselt number, which is used in heat transfer applications. The Nusselt number represents the ratio of convective to conductive heat transfer across a boundary. This non-dimensional number helps engineers understand how effectively heat is being transferred in a system, allowing for improved thermal management in applications ranging from electronic devices to industrial processes.The beauty of non-dimensional numbers lies in their ability to simplify the analysis of complex systems. By removing the units from the equations, scientists and engineers can focus on the relationships between variables rather than getting bogged down by the specifics of measurement. This abstraction not only aids in theoretical analysis but also enhances communication among professionals in different fields, as they can discuss results and findings without needing to reconcile different unit systems.Furthermore, non-dimensional numbers enable the use of similarity principles in experimental research. For instance, when conducting experiments in a wind tunnel, researchers often use models that are smaller than the actual objects they intend to study. By ensuring that the non-dimensional numbers (like the Reynolds number) are consistent between the model and the full-scale object, researchers can accurately predict the behavior of the larger object based on the results observed in the model. This technique saves time and resources while still allowing for valid conclusions to be drawn.In summary, the significance of non-dimensional numbers in scientific and engineering disciplines cannot be overstated. They provide a framework for comparing different systems, simplify complex equations, and facilitate effective communication among professionals. As technology continues to advance and new challenges arise, the importance of understanding and utilizing non-dimensional numbers will only grow, making them an essential tool in the toolkit of scientists and engineers alike. Their ability to distill complex relationships into simpler, unitless forms allows for greater innovation and efficiency in tackling the problems of tomorrow.
在工程和物理领域,无量纲数的概念在简化复杂方程和理解各种现象方面发挥着至关重要的作用。无量纲数是没有任何物理单位的量,这使得可以比较不同的系统,而不论它们的规模或用于测量的单位。这一特性使得无量纲数在流体动力学、热力学以及其他科学和工程分支中尤为有用。一个最常见的无量纲数的例子是雷诺数,它用于预测不同流体流动情况下的流动模式。雷诺数是通过将惯性力与粘性力的比率计算得出的,提供了关于流动是层流还是湍流的见解。通过使用像雷诺数这样的无量纲数,工程师可以设计在不同条件下高效运行的系统,而无需为每种可能的情况进行详尽的实验。另一个例子是努塞尔数,它用于热传递应用。努塞尔数表示对流与导热在边界上的比率。这个无量纲数帮助工程师理解系统中热量传递的有效性,从而改善电子设备到工业过程中的热管理。无量纲数的美在于它们能够简化复杂系统的分析。通过去除方程中的单位,科学家和工程师可以专注于变量之间的关系,而不是被测量的具体细节所困扰。这种抽象不仅有助于理论分析,还增强了不同领域专业人员之间的沟通,因为他们可以在不需要调和不同单位系统的情况下讨论结果和发现。此外,无量纲数使实验研究中相似性原则的使用成为可能。例如,在风洞中进行实验时,研究人员通常使用比他们打算研究的实际物体更小的模型。通过确保模型和全尺寸物体之间的无量纲数(如雷诺数)保持一致,研究人员可以根据模型中观察到的结果准确预测较大物体的行为。这种技术节省了时间和资源,同时仍然能够得出有效的结论。总之,无量纲数在科学和工程学科中的重要性不可低估。它们提供了比较不同系统的框架,简化了复杂方程,并促进了专业人员之间的有效沟通。随着技术的不断进步和新挑战的出现,理解和利用无量纲数的重要性只会增加,使其成为科学家和工程师工具箱中的一个重要工具。它们将复杂关系提炼为更简单、无单位的形式,使得在解决未来问题时能够实现更大的创新和效率。