non-dimensional number
简明释义
无量纲数
英英释义
例句
1.The Reynolds number is a commonly used non-dimensional number 无量纲数 in fluid mechanics to predict flow patterns in different fluid flow situations.
雷诺数是流体力学中常用的无量纲数 无量纲数,用于预测不同流动情况下的流动模式。
2.When designing chemical reactors, engineers often rely on the Damköhler number, a non-dimensional number 无量纲数 that relates reaction rates to mass transport rates.
在设计化学反应器时,工程师通常依赖于达姆考勒数,这是一种将反应速率与物质传输速率相关联的无量纲数 无量纲数。
3.The Strouhal number is a non-dimensional number 无量纲数 that describes oscillating flow mechanisms and is often used in aerodynamics.
斯特劳哈尔数是描述振荡流动机制的一个无量纲数 无量纲数,通常用于空气动力学。
4.The Froude number is an important non-dimensional number 无量纲数 used in naval architecture to compare inertial and gravitational forces.
弗劳德数是在船舶工程中用于比较惯性和重力的一个重要无量纲数 无量纲数。
5.In heat transfer analysis, the Nusselt number is a crucial non-dimensional number 无量纲数 that represents the ratio of convective to conductive heat transfer.
在热传递分析中,努塞尔数是一个关键的无量纲数 无量纲数,表示对流与导热的比率。
作文
In the field of engineering and physics, the concept of a non-dimensional number plays a crucial role in simplifying complex problems. A non-dimensional number is a quantity without any physical units, which allows for the comparison of different systems or phenomena without the influence of scale. This property makes non-dimensional numbers particularly useful in the analysis of fluid dynamics, heat transfer, and other areas where dimensional analysis is applicable.One of the most commonly used non-dimensional numbers is the Reynolds number, which is defined as the ratio of inertial forces to viscous forces in a fluid flow. It helps predict flow patterns in different fluid flow situations. When the Reynolds number is low, flow tends to be laminar, meaning it flows smoothly in parallel layers. Conversely, a high Reynolds number indicates turbulent flow, characterized by chaotic and irregular fluid motion. By using the non-dimensional number in this way, engineers can design more efficient systems, whether they are creating pipelines, aircraft, or even predicting weather patterns.Another important non-dimensional number is the Nusselt number, which relates the convective heat transfer to conductive heat transfer within a fluid. This non-dimensional number is essential for understanding how heat moves through materials and fluids, allowing engineers to predict thermal performance in various applications. For instance, when designing heat exchangers, knowing the Nusselt number can help optimize the efficiency of heat transfer, ensuring that systems operate effectively and save energy.The significance of non-dimensional numbers extends beyond just fluid dynamics and heat transfer; they are also widely used in chemical reactions, mechanical systems, and even in the study of biological processes. In chemical engineering, the Damköhler number is a non-dimensional number that compares the rate of reaction to the rate of transport processes. This comparison is vital for reactor design and optimization, ensuring that reactions proceed efficiently and safely.In addition to their practical applications, non-dimensional numbers also provide a theoretical foundation for scaling laws. Scaling laws allow scientists and engineers to understand how changes in size affect the behavior of systems. For example, if a model of an airplane is tested in a wind tunnel, the results can be scaled up to predict how a full-sized airplane will perform, thanks to the non-dimensional numbers that govern the flow around the wings.Understanding non-dimensional numbers is essential for students and professionals in the fields of science and engineering. They not only simplify the analysis of complex systems but also enable effective communication of concepts across various disciplines. As technology continues to advance, the importance of non-dimensional numbers will only grow, as they provide a universal language for comparing and analyzing different physical phenomena.In conclusion, the concept of non-dimensional numbers is fundamental in many scientific and engineering disciplines. Their ability to eliminate units and allow for comparative analysis facilitates a deeper understanding of various systems and processes. Whether in fluid dynamics, heat transfer, or chemical engineering, non-dimensional numbers serve as invaluable tools for researchers and practitioners alike, enabling them to design better systems and solve complex problems efficiently.
在工程和物理领域,无量纲数的概念在简化复杂问题方面起着至关重要的作用。无量纲数是没有任何物理单位的量,这使得在不同系统或现象之间进行比较时不受尺度的影响。这一特性使得无量纲数在流体动力学、热传递以及其他适用维度分析的领域中尤为有用。最常用的无量纲数之一是雷诺数,它被定义为流体流动中惯性力与粘性力的比率。它有助于预测不同流体流动情况下的流动模式。当雷诺数较低时,流动往往是层流,即平行层顺畅流动。相反,高雷诺数则表明湍流,特征是混乱和不规则的流体运动。通过以这种方式使用无量纲数,工程师可以设计出更高效的系统,无论是创建管道、飞机,还是预测天气模式。另一个重要的无量纲数是努塞尔数,它将对流热传递与流体内的导热传递联系起来。这个无量纲数对于理解热如何在材料和流体中移动至关重要,使工程师能够预测各种应用中的热性能。例如,在设计热交换器时,了解努塞尔数可以帮助优化热传递的效率,确保系统有效运行并节省能源。无量纲数的重要性不仅限于流体动力学和热传递;它们还广泛应用于化学反应、机械系统,甚至在生物过程的研究中。在化工中,达姆科勒数是一个无量纲数,它比较反应速率与运输过程速率。这种比较对于反应器的设计和优化至关重要,确保反应安全高效地进行。除了实际应用,无量纲数还为缩放法则提供了理论基础。缩放法则使科学家和工程师能够理解大小变化如何影响系统的行为。例如,如果一个飞机模型在风洞中测试,结果可以根据无量纲数的规律进行缩放,以预测全尺寸飞机的性能。理解无量纲数对于科学和工程领域的学生和专业人士至关重要。它们不仅简化了复杂系统的分析,还使跨多个学科的概念有效沟通。随着技术的不断进步,无量纲数的重要性只会增加,因为它们为比较和分析不同物理现象提供了通用语言。总之,无量纲数的概念在许多科学和工程学科中是基础性的。它们消除单位并允许比较分析的能力促进了对各种系统和过程的更深入理解。无论是在流体动力学、热传递还是化学工程中,无量纲数都是研究人员和从业者不可或缺的工具,使他们能够更有效地设计更好的系统和解决复杂问题。