metacentric height above center of buoyancy
简明释义
稳心距浮心高度
英英释义
例句
1.Understanding the metacentric height above center of buoyancy 浮心上方的元心高度 is crucial for safe navigation in coastal waters.
理解浮心上方的元心高度 metacentric height above center of buoyancy对于在沿海水域安全航行至关重要。
2.The stability of the ship depends largely on the metacentric height above center of buoyancy 浮心上方的元心高度, which influences how it responds to waves.
船的稳定性在很大程度上取决于浮心上方的元心高度 metacentric height above center of buoyancy,这影响了它对波浪的反应。
3.During the design phase, naval architects assess the metacentric height above center of buoyancy 浮心上方的元心高度 to optimize performance.
在设计阶段,海军建筑师评估浮心上方的元心高度 metacentric height above center of buoyancy以优化性能。
4.Engineers often calculate the metacentric height above center of buoyancy 浮心上方的元心高度 to ensure that a vessel can withstand rough seas.
工程师们通常计算浮心上方的元心高度 metacentric height above center of buoyancy,以确保船只能够抵御恶劣海况。
5.A higher metacentric height above center of buoyancy 浮心上方的元心高度 generally indicates better stability for smaller boats.
较高的浮心上方的元心高度 metacentric height above center of buoyancy通常表明小型船只具有更好的稳定性。
作文
The stability of floating vessels is a crucial aspect of naval architecture and marine engineering. One of the key concepts in understanding this stability is the metacentric height above center of buoyancy. This term refers to the vertical distance between the center of buoyancy (CB) and the metacenter (M) of a ship or floating body. To fully grasp the significance of this concept, it is essential to break it down into its components and understand how they interact to affect a vessel's stability.The center of buoyancy is the point in a submerged object where the buoyant force acts. It is determined by the shape and volume of the underwater portion of the vessel. When a ship is floating at rest, the center of buoyancy is directly below the center of gravity (CG). If the ship tilts or heels due to external forces, the center of buoyancy shifts, moving to a new position that is directly beneath the center of gravity. This shift creates a righting moment that helps the ship return to an upright position.On the other hand, the metacenter is a point where the buoyant force acts when the ship is tilted. It can be visualized as the point where the vertical line through the center of buoyancy intersects the vertical line through the center of gravity when the vessel is heeled. The metacentric height above center of buoyancy is a critical measurement because it indicates how far the metacenter is above the center of buoyancy. A larger metacentric height generally means greater stability, as it results in a stronger righting moment when the vessel is tilted.Understanding the relationship between these two points is vital for ship designers and operators. A vessel with a high metacentric height above center of buoyancy will tend to return to its upright position more quickly after being disturbed, making it less likely to capsize. Conversely, a low metacentric height can lead to instability, especially in rough seas, where waves can cause significant tilting.In practical applications, naval architects often calculate the metacentric height above center of buoyancy to ensure that ships are designed with adequate stability for their intended use. For example, cargo ships, which may carry heavy loads, need to have a sufficient metacentric height to handle the shifting weight of cargo during transit. Similarly, passenger vessels require a careful balance of metacentric height to ensure the safety and comfort of passengers while navigating through varying sea conditions.In conclusion, the concept of metacentric height above center of buoyancy plays a fundamental role in the design and operation of marine vessels. By understanding this concept, engineers can create safer and more stable ships that can withstand the challenges of the open sea. As we continue to explore advancements in naval technology, the principles surrounding buoyancy and stability remain essential for creating efficient and reliable maritime vessels.
浮动船只的稳定性是海洋建筑和海洋工程中的一个关键方面。理解这一稳定性的一个重要概念是重心高度与浮力中心的高度。这个术语指的是船舶或浮体的浮力中心(CB)与重心(M)之间的垂直距离。要充分理解这个概念的重要性,有必要将其分解为各个组成部分,并理解它们如何相互作用以影响船只的稳定性。浮力中心是浸没物体中浮力作用的点。它由船舶水下部分的形状和体积决定。当船只静止漂浮时,浮力中心正好位于重心(CG)正下方。如果由于外力导致船只倾斜或倾覆,浮力中心会发生移动,转移到一个新的位置,正好位于重心正下方。这种移动产生了一个回正力矩,帮助船只恢复到直立位置。另一方面,重心是当船只倾斜时浮力作用的点。可以将其视为浮力线通过浮力中心的垂直线与通过重心的垂直线相交的位置。重心高度与浮力中心的高度是一个关键的测量,因为它表示重心距离浮力中心的高度。较大的重心高度通常意味着更大的稳定性,因为它在船只倾斜时产生更强的回正力矩。理解这两个点之间的关系对于船舶设计师和操作员至关重要。具有较高重心高度与浮力中心的高度的船只在受到干扰后更快地恢复到直立位置,从而减少倾覆的可能性。相反,较低的重心高度可能导致不稳定性,特别是在波涛汹涌的海面上,波浪可以导致显著的倾斜。在实际应用中,海军建筑师通常计算重心高度与浮力中心的高度,以确保船舶在其预期用途上具有足够的稳定性。例如,货船可能承载重载,需要有足够的重心高度来应对运输过程中货物的移动。同样,客运船只需要仔细平衡重心高度,以确保在不同海况下乘客的安全和舒适。总之,重心高度与浮力中心的高度的概念在海洋船舶的设计和操作中起着基础性作用。通过理解这一概念,工程师可以创造出更安全、更稳定的船舶,能够承受开放海域的挑战。随着我们继续探索海洋技术的进步,围绕浮力和稳定性的原则仍然是创造高效和可靠的海事船舶的基本要素。
相关单词