negative temperature coefficient
简明释义
负温度系数
英英释义
A negative temperature coefficient refers to a property of a material or substance where its resistance decreases as the temperature increases. | 负温度系数是指一种材料或物质的特性,即其电阻随着温度的升高而降低。 |
例句
1.A negative temperature coefficient 负温度系数 material can help in designing efficient thermal management systems.
一种负温度系数 负温度系数材料可以帮助设计高效的热管理系统。
2.Thermistors often have a negative temperature coefficient 负温度系数, meaning their resistance decreases as temperature increases.
热敏电阻通常具有负温度系数 负温度系数,这意味着它们的电阻随着温度的升高而降低。
3.The negative temperature coefficient 负温度系数 of certain semiconductors makes them suitable for low-temperature applications.
某些半导体的负温度系数 负温度系数使它们适合低温应用。
4.In electronics, components with a negative temperature coefficient 负温度系数 are used for temperature sensing applications.
在电子学中,具有负温度系数 负温度系数的组件用于温度传感应用。
5.When using a negative temperature coefficient 负温度系数 resistor, the circuit behavior will change significantly with temperature variations.
使用负温度系数 负温度系数电阻时,电路行为会因温度变化而显著改变。
作文
In the realm of physics and material science, the concept of temperature coefficients plays a crucial role in understanding how materials respond to changes in temperature. One particularly interesting phenomenon is that of the negative temperature coefficient, which refers to materials that exhibit a decrease in resistance as the temperature increases. This behavior is often observed in certain types of semiconductors and thermistors, making them invaluable in various applications such as temperature sensing and electronic circuits.To grasp the significance of the negative temperature coefficient more effectively, we must first delve into the basics of electrical resistance. Resistance is the opposition that a material offers to the flow of electric current. In most conductors, resistance tends to increase with temperature due to the increased vibrational energy of atoms, which impedes the flow of electrons. However, materials with a negative temperature coefficient behave differently. As the temperature rises, the resistance of these materials decreases, allowing for greater current flow.This unique property can be attributed to the behavior of charge carriers within the material. In semiconductors, for instance, increasing temperature can provide enough energy to excite electrons from the valence band into the conduction band, thereby increasing the number of charge carriers available for conduction. Consequently, this leads to a reduction in resistance, illustrating the essence of a negative temperature coefficient.The practical implications of materials with a negative temperature coefficient are vast. Thermistors, which are temperature-sensitive resistors, utilize this property to create accurate temperature sensors. These devices are widely used in everyday applications, from household appliances to complex industrial systems. By monitoring changes in resistance, thermistors can provide precise temperature readings, enabling efficient temperature control and regulation.Moreover, the negative temperature coefficient is also crucial in the design of electronic components such as temperature-compensating circuits. In these circuits, materials with a negative temperature coefficient can help stabilize the performance of electronic devices over varying temperature ranges. This is particularly important in environments where temperature fluctuations can affect the reliability and functionality of electronic systems.In conclusion, the negative temperature coefficient is a fascinating aspect of material science that highlights the intricate relationship between temperature and electrical resistance. Understanding this phenomenon not only enhances our knowledge of how materials behave under different conditions but also opens up numerous possibilities for technological advancements. As we continue to explore the properties of materials with a negative temperature coefficient, we pave the way for innovations that can lead to more efficient and reliable electronic systems, ultimately benefiting various industries and enhancing our daily lives.
在物理学和材料科学的领域中,温度系数的概念在理解材料如何响应温度变化方面起着至关重要的作用。一个特别有趣的现象是负温度系数,它指的是那些随着温度升高而电阻减少的材料。这种行为通常在某些类型的半导体和热敏电阻中观察到,使它们在温度传感和电子电路等各种应用中变得不可或缺。为了更有效地理解负温度系数的重要性,我们必须首先深入了解电阻的基本知识。电阻是材料对电流流动所提供的阻力。在大多数导体中,由于原子的振动能量增加,电阻往往随着温度的升高而增加,这会妨碍电子的流动。然而,具有负温度系数的材料则表现出不同的行为。随着温度的升高,这些材料的电阻降低,从而允许更大的电流流动。这种独特的特性可以归因于材料内部电荷载流子的行为。例如,在半导体中,升高的温度可以提供足够的能量将电子从价带激发到导带,从而增加可用于导电的电荷载流子数量。因此,这导致电阻的减少,展示了负温度系数的本质。具有负温度系数的材料在实际应用中的影响是巨大的。热敏电阻,作为温度敏感的电阻器,利用这一特性制造出准确的温度传感器。这些设备广泛应用于日常应用中,从家用电器到复杂的工业系统。通过监测电阻的变化,热敏电阻能够提供精确的温度读数,从而实现有效的温度控制和调节。此外,负温度系数在设计温度补偿电路的电子元件中也至关重要。在这些电路中,具有负温度系数的材料可以帮助稳定电子设备在不同温度范围内的性能。这在温度波动可能影响电子系统的可靠性和功能的环境中尤为重要。总之,负温度系数是材料科学中一个引人入胜的方面,它突显了温度与电阻之间复杂的关系。理解这一现象不仅增强了我们对材料在不同条件下行为的认识,还为技术进步开辟了无数可能性。随着我们继续探索具有负温度系数的材料的特性,我们为创新铺平了道路,这可以导致更高效和可靠的电子系统,最终使各个行业受益并改善我们的日常生活。
相关单词