negative sign

简明释义

负号

英英释义

A negative sign is a symbol (−) used to indicate that a number or value is less than zero.

负号是一个符号(−),用于表示一个数字或数值小于零。

In mathematics, it signifies the opposite of a positive value.

在数学中,它表示一个正值的相反数。

例句

1.When calculating the temperature, a negative sign 负号 shows that it is below freezing.

在计算温度时,负号 negative sign 表示温度低于冰点。

2.The graph shows a negative sign 负号 in the slope of the line, indicating a decrease.

图表显示直线的斜率有一个负号 negative sign,表示减少。

3.In accounting, a negative sign 负号 before an amount indicates a loss.

在会计中,金额前的负号 negative sign 表示损失。

4.In mathematics, a negative sign 负号 indicates that a number is less than zero.

在数学中,负号 negative sign 表示一个数字小于零。

5.If you see a negative sign 负号 in front of your bank balance, it means you're overdrawn.

如果你在银行余额前看到一个负号 negative sign,这意味着你透支了。

作文

In mathematics, the concept of a negative sign is fundamental to understanding various operations and functions. The negative sign indicates that a number is less than zero, which is crucial for distinguishing between positive and negative values. For instance, in the number line, numbers to the left of zero are considered negative, while those to the right are positive. This distinction is not only important in mathematics but also in real-life applications such as finance, where a negative sign can denote a loss or debt.When solving equations, the presence of a negative sign can significantly alter the outcome. For example, in the equation x - 5 = 0, if we add 5 to both sides, we find that x = 5. However, if we consider the equation -x - 5 = 0, the negative sign in front of x changes our approach. We would need to isolate x by adding 5 to both sides and then multiplying through by -1, leading us to x = -5. This illustrates how a simple negative sign can change the entire solution to a problem.Moreover, the negative sign plays an essential role in various mathematical functions, particularly in calculus. For instance, when analyzing the slope of a line on a graph, a negative sign indicates that the line is descending from left to right. This can have significant implications in fields such as physics and economics, where understanding trends and rates of change is vital. A negative sign in a derivative may suggest that a function is decreasing, which can inform decisions in business strategies or scientific research.In addition to its mathematical significance, the negative sign has broader implications in everyday life. Consider situations where outcomes are measured. In a grading system, a negative sign might be used to indicate points deducted for mistakes. Similarly, in health assessments, a negative sign could indicate a negative test result, which can be crucial for medical diagnoses. Thus, the negative sign is not merely a mathematical symbol; it reflects a deeper understanding of outcomes across various contexts.Furthermore, understanding the negative sign is essential for developing critical thinking skills. When faced with data or results, recognizing the implications of a negative sign encourages individuals to analyze situations more thoroughly. For instance, if a company reports a negative sign in quarterly earnings, stakeholders must evaluate the reasons behind it and strategize accordingly. This analytical approach fosters informed decision-making and promotes resilience in facing challenges.In conclusion, the negative sign is a powerful symbol in mathematics and beyond. It signifies more than just a numerical value; it represents loss, decrease, and critical analysis. By understanding the implications of the negative sign, individuals can enhance their mathematical skills and apply this knowledge to real-world situations. Whether in finance, science, or everyday decision-making, the negative sign serves as a reminder of the complexities and nuances that exist in various scenarios. Therefore, mastering the concept of the negative sign is not only beneficial for academic success but also for navigating the intricacies of life itself.

在数学中,负号的概念对于理解各种运算和函数至关重要。负号表示一个数字小于零,这对于区分正值和负值至关重要。例如,在数轴上,零左侧的数字被视为负数,而右侧的数字则是正数。这种区分不仅在数学中重要,在现实生活中的应用如金融中,负号可以表示损失或债务。在解方程时,负号的存在会显著改变结果。例如,在方程 x - 5 = 0 中,如果我们在两边都加 5,我们发现 x = 5。然而,如果我们考虑方程 -x - 5 = 0,x 前面的负号改变了我们的处理方式。我们需要通过在两边加 5 来孤立 x,然后通过 -1 乘以整个方程,从而得到 x = -5。这说明一个简单的负号可以改变问题的整个解决方案。此外,负号在各种数学函数中扮演着重要角色,特别是在微积分中。例如,在分析图上的直线斜率时,负号表示该直线从左到右下降。这在物理和经济学等领域具有重大意义,因为了解趋势和变化率至关重要。导数中的负号可能表明一个函数正在减少,这可以为商业策略或科学研究中的决策提供信息。除了它的数学意义外,负号在日常生活中也有更广泛的影响。考虑测量结果的情况。在评分系统中,负号可能用于表示因错误而扣除的分数。同样,在健康评估中,负号可能表示阴性测试结果,这对于医学诊断至关重要。因此,负号不仅仅是一个数学符号;它反映了在各种背景下对结果的更深层次理解。此外,理解负号对于培养批判性思维技能至关重要。当面对数据或结果时,识别负号的含义鼓励个人更深入地分析情况。例如,如果一家公司报告季度收益出现负号,利益相关者必须评估其背后的原因并相应制定战略。这种分析方法促进了明智的决策,并在面对挑战时提升了韧性。总之,负号在数学及其他领域是一个强大的符号。它不仅仅代表一个数值;它还象征着损失、减少和批判性分析。通过理解负号的含义,个人可以增强他们的数学技能,并将这种知识应用于现实世界的情况。无论是在金融、科学还是日常决策中,负号都提醒我们在各种场景中存在的复杂性和细微差别。因此,掌握负号的概念不仅对学业成功有利,也有助于驾驭生活的复杂性。