negative angle
简明释义
负角俯角
英英释义
A negative angle is an angle measured in the clockwise direction from a reference line, typically the positive x-axis, resulting in a value that is less than zero. | 负角是从参考线(通常是正x轴)顺时针测量的角度,导致的值小于零。 |
例句
1.In geometry, a negative angle 负角 can be represented as a clockwise rotation from the positive x-axis.
在几何中,负角 negative angle可以表示为从正x轴顺时针旋转。
2.The rotation matrix for a negative angle 负角 is different from that of a positive angle.
对于负角 negative angle的旋转矩阵与正角的旋转矩阵不同。
3.In trigonometry, using a negative angle 负角 can simplify certain calculations.
在三角学中,使用负角 negative angle可以简化某些计算。
4.The sine of a negative angle 负角 is equal to the negative sine of its positive counterpart.
一个负角 negative angle的正弦值等于其正角的负正弦值。
5.When calculating the trajectory of the projectile, we found that the launch angle was a negative angle 负角.
在计算弹道时,我们发现发射角是一个负角 negative angle。
作文
In mathematics, particularly in the study of trigonometry, angles can be classified as positive or negative based on their direction. A negative angle (负角) is defined as an angle measured in the clockwise direction from the positive x-axis. This concept may seem abstract at first, but it has practical applications in various fields such as physics, engineering, and computer graphics. Understanding negative angles (负角) is essential for solving problems that involve rotational motion and periodic functions.To illustrate the concept of a negative angle (负角), consider a unit circle, which is a circle with a radius of one centered at the origin of a coordinate plane. When we measure an angle counterclockwise from the positive x-axis, we define it as a positive angle. For example, an angle of 90 degrees (or π/2 radians) is a positive angle that points straight up along the y-axis. Conversely, if we measure the same angle in the clockwise direction, we would describe it as a negative angle (负角). In this case, the clockwise rotation of 90 degrees is equivalent to -90 degrees (or -π/2 radians).The significance of negative angles (负角) becomes clear when we analyze trigonometric functions such as sine, cosine, and tangent. These functions are periodic, meaning they repeat their values at regular intervals. For instance, the sine function is defined as the y-coordinate of a point on the unit circle. Therefore, the sine of a negative angle (负角) can be calculated using the sine of its positive counterpart. Specifically, the relationship can be expressed as follows: sin(-θ) = -sin(θ). This property shows how negative angles (负角) can be used to simplify calculations involving trigonometric functions.In practical applications, negative angles (负角) are often encountered in physics, especially in the study of rotational dynamics. For example, when analyzing the motion of a spinning object, we may need to describe its angular position using negative angles (负角) to indicate a clockwise rotation. This is crucial for accurately modeling the behavior of rotating systems, such as gears and wheels.Moreover, computer graphics extensively utilize the concept of negative angles (负角) for rendering images and animations. When rotating objects in a virtual environment, programmers often apply transformations that include both positive and negative angles (负角) to achieve the desired orientation. By understanding how to work with negative angles (负角), graphic designers can create realistic animations that simulate real-world physics.In conclusion, the concept of a negative angle (负角) is fundamental in mathematics and its applications. Whether in trigonometry, physics, or computer graphics, understanding how to work with negative angles (负角) enhances our ability to solve complex problems and create accurate models. As we continue to explore the world around us, the knowledge of negative angles (负角) will undoubtedly play a vital role in advancing our understanding of various scientific and technological fields.
在数学中,特别是在三角学的研究中,角度可以根据其方向分为正角和负角。负角(负角)被定义为从正x轴顺时针测量的角度。这个概念起初可能显得抽象,但它在物理学、工程学和计算机图形学等多个领域有着实际应用。理解负角(负角)对于解决涉及旋转运动和周期函数的问题至关重要。为了说明负角(负角)的概念,可以考虑单位圆,即以坐标平面原点为中心、半径为1的圆。当我们从正x轴逆时针测量一个角度时,我们将其定义为正角。例如,90度(或π/2弧度)的角是一个指向y轴正方向的正角。相反,如果我们从正x轴顺时针测量相同的角度,我们会将其描述为负角(负角)。在这种情况下,顺时针旋转90度等价于-90度(或-π/2弧度)。负角(负角)的重要性在于我们分析正弦、余弦和正切等三角函数时变得清晰。这些函数是周期性的,意味着它们在规律的间隔内重复其值。例如,正弦函数被定义为单位圆上某一点的y坐标。因此,负角(负角)的正弦值可以使用其正角的正弦值来计算。具体来说,这种关系可以表示为:sin(-θ) = -sin(θ)。这个性质展示了如何利用负角(负角)简化涉及三角函数的计算。在实际应用中,负角(负角)常常出现在物理学中,尤其是在旋转动力学的研究中。例如,在分析旋转物体的运动时,我们可能需要使用负角(负角)来描述其角位置,以指示顺时针旋转。这对于准确建模旋转系统(如齿轮和车轮)的行为至关重要。此外,计算机图形学广泛利用负角(负角)的概念来渲染图像和动画。当在虚拟环境中旋转物体时,程序员通常应用包括正角和负角(负角)的变换,以实现所需的方向。通过理解如何处理负角(负角),图形设计师可以创建模拟现实物理的逼真动画。总之,负角(负角)的概念在数学及其应用中是基础性的。无论是在三角学、物理学还是计算机图形学中,理解如何处理负角(负角)都增强了我们解决复杂问题和创建准确模型的能力。随着我们继续探索周围的世界,负角(负角)的知识无疑将在推动我们对各种科学和技术领域的理解中发挥重要作用。
相关单词