mean deviation
简明释义
平均自差
英英释义
例句
1.The mean deviation is often used in finance to measure the risk of an investment.
在金融中,平均偏差常用于衡量投资的风险。
2.In statistics, the mean deviation helps to assess the variability of a dataset.
在统计学中,平均偏差有助于评估数据集的变异性。
3.A lower mean deviation indicates that the values are closer to the mean.
较低的平均偏差表示数值更接近均值。
4.The mean deviation is calculated to understand the average distance of each data point from the mean.
计算平均偏差是为了理解每个数据点与均值的平均距离。
5.To find the mean deviation, subtract the mean from each data point and take the average of those absolute differences.
要找到平均偏差,需从每个数据点中减去均值,并取这些绝对差值的平均值。
作文
In statistics, understanding the concept of mean deviation is crucial for analyzing data sets effectively. The mean deviation is a measure of dispersion that indicates how much individual data points deviate from the average value of the data set. It provides insight into the variability of the data, which can be essential for making informed decisions based on statistical analysis.To calculate the mean deviation, one must first determine the mean (average) of the data set. Once the mean is established, the next step involves finding the absolute deviations of each data point from the mean. This means subtracting the mean from each data point and taking the absolute value of the result to ensure that all deviations are positive. The final step is to average these absolute deviations, resulting in the mean deviation.For example, consider a simple data set: {4, 8, 6, 5, 3}. The mean of this data set is (4 + 8 + 6 + 5 + 3) / 5 = 5.2. Next, we calculate the absolute deviations: |4 - 5.2| = 1.2, |8 - 5.2| = 2.8, |6 - 5.2| = 0.8, |5 - 5.2| = 0.2, and |3 - 5.2| = 2.2. The average of these absolute deviations gives us the mean deviation: (1.2 + 2.8 + 0.8 + 0.2 + 2.2) / 5 = 1.44.The mean deviation is particularly useful in various fields such as finance, quality control, and social sciences. In finance, for instance, investors often analyze the mean deviation of stock prices to understand the volatility of their investments. A lower mean deviation indicates that the stock prices are more stable and less risky, while a higher mean deviation suggests greater variability and potential risk.Moreover, in quality control, manufacturers use the mean deviation to assess the consistency of their products. By determining how much their products deviate from the desired specifications, companies can identify areas for improvement and maintain high standards of quality. This application of mean deviation helps businesses reduce waste and enhance customer satisfaction.In social sciences, researchers may use the mean deviation to analyze survey results or experimental data. Understanding how responses vary from the average can reveal important insights about public opinion or behavioral trends. For instance, if a survey shows a low mean deviation in responses regarding a particular policy, it may indicate a strong consensus among participants. Conversely, a high mean deviation could suggest diverse opinions and a need for further investigation.In conclusion, the mean deviation is an essential statistical tool that helps analysts and researchers understand the variability within a data set. Its applications across different fields demonstrate its importance in making informed decisions. By mastering the calculation and interpretation of the mean deviation, individuals can enhance their analytical skills and contribute to more effective data-driven decision-making processes.
在统计学中,理解平均偏差的概念对于有效分析数据集至关重要。平均偏差是一个离散度的度量,表明各个数据点与数据集的平均值之间的偏差程度。它为数据的变异性提供了洞察,这对于根据统计分析做出明智决策至关重要。要计算平均偏差,首先必须确定数据集的均值(平均值)。一旦确定了均值,下一步就是找出每个数据点与均值的绝对偏差。这意味着从每个数据点中减去均值,并取结果的绝对值,以确保所有偏差都是正值。最后一步是对这些绝对偏差进行平均,从而得到平均偏差。例如,考虑一个简单的数据集:{4, 8, 6, 5, 3}。该数据集的均值为(4 + 8 + 6 + 5 + 3)/ 5 = 5.2。接下来,我们计算绝对偏差:|4 - 5.2| = 1.2,|8 - 5.2| = 2.8,|6 - 5.2| = 0.8,|5 - 5.2| = 0.2,以及|3 - 5.2| = 2.2。这些绝对偏差的平均值给我们带来了平均偏差:(1.2 + 2.8 + 0.8 + 0.2 + 2.2)/ 5 = 1.44。平均偏差在金融、质量控制和社会科学等多个领域特别有用。例如,在金融领域,投资者经常分析股票价格的平均偏差以了解他们投资的波动性。较低的平均偏差表明股票价格更稳定且风险较小,而较高的平均偏差则表明变异性更大,潜在风险更高。此外,在质量控制中,制造商使用平均偏差来评估其产品的一致性。通过确定其产品与所需规格的偏差程度,公司可以识别改进的领域并保持高质量标准。应用平均偏差有助于企业减少浪费并提高客户满意度。在社会科学中,研究人员可能使用平均偏差来分析调查结果或实验数据。了解响应如何偏离平均值可以揭示公众舆论或行为趋势的重要见解。例如,如果一项调查显示关于某项政策的响应具有较低的平均偏差,这可能表明参与者之间达成了一致。相反,较高的平均偏差可能表明意见分歧,需要进一步调查。总之,平均偏差是一个重要的统计工具,帮助分析师和研究人员理解数据集中的变异性。它在不同领域的应用展示了其在做出明智决策中的重要性。通过掌握平均偏差的计算和解释,个人可以增强其分析技能,并促进更有效的数据驱动决策过程。
相关单词