mean deviation

简明释义

平均偏差平均偏移

英英释义

Mean deviation is a measure of the average absolute deviation of each data point from the mean of a dataset, indicating the dispersion or variability within the data.

均方差是一个衡量数据集中每个数据点与均值之间绝对偏差的平均值的指标,表示数据的分散程度或变异性。

例句

1.When analyzing performance, the mean deviation 平均偏差 can help identify inconsistencies.

在分析表现时,mean deviation 平均偏差 可以帮助识别不一致性。

2.In statistics, the mean deviation 平均偏差 is often used to assess variability.

在统计学中,mean deviation 平均偏差 通常用于评估变异性。

3.To calculate the mean deviation 平均偏差, you first find the absolute differences from the mean.

要计算mean deviation 平均偏差,首先需要找到与均值的绝对差。

4.A low mean deviation 平均偏差 suggests that the data points are close to the mean.

低的mean deviation 平均偏差 表明数据点接近均值。

5.The mean deviation 平均偏差 of the data set indicates how much the values differ from the average.

数据集的mean deviation 平均偏差 表示数值与平均值之间的差异。

作文

In the field of statistics, understanding the concept of mean deviation is crucial for analyzing data sets effectively. The mean deviation (平均偏差) measures the average distance between each data point in a set and the mean of that set. This statistical tool provides insights into the variability and dispersion of the data, which can greatly influence decision-making processes in various disciplines such as economics, psychology, and engineering.To illustrate the significance of mean deviation, let’s consider a simple example. Suppose we have a set of test scores from a class: 70, 75, 80, 85, and 90. First, we calculate the mean score by adding all the scores together and dividing by the number of scores. In this case, the mean is (70 + 75 + 80 + 85 + 90) / 5 = 80.Next, we find the absolute deviations of each score from the mean. For our example:- |70 - 80| = 10- |75 - 80| = 5- |80 - 80| = 0- |85 - 80| = 5- |90 - 80| = 10Now, we take the average of these absolute deviations to find the mean deviation. The calculation is:(10 + 5 + 0 + 5 + 10) / 5 = 6. This means that, on average, the test scores deviate from the mean by 6 points.Understanding the mean deviation is particularly useful when comparing different data sets. For instance, if we were to compare another class’s test scores: 60, 65, 70, 75, and 80, we would follow the same process. The mean would be (60 + 65 + 70 + 75 + 80) / 5 = 64. The absolute deviations from this mean would be:- |60 - 64| = 4- |65 - 64| = 1- |70 - 64| = 6- |75 - 64| = 11- |80 - 64| = 16Calculating the mean deviation for this class gives us:(4 + 1 + 6 + 11 + 16) / 5 = 7.6. This indicates that the second class's scores are more spread out from their mean compared to the first class, which had a mean deviation of 6.In practical applications, the mean deviation can guide educators in assessing student performance consistency, helping them identify students who may need additional support. Moreover, businesses can utilize this metric to evaluate product quality and customer satisfaction by analyzing feedback scores or sales data.In conclusion, the mean deviation (平均偏差) serves as an essential measure of dispersion in statistics. By providing a clear picture of how data points differ from the mean, it aids in making informed decisions across various fields. As we continue to gather and analyze data in our increasingly data-driven world, mastering concepts like mean deviation becomes imperative for effective interpretation and application of statistical information.

在统计学领域,理解平均偏差这一概念对于有效分析数据集至关重要。平均偏差测量的是数据集中每个数据点与该数据集均值之间的平均距离。这一统计工具提供了对数据变异性和离散性的洞察,这可以极大地影响各个学科(如经济学、心理学和工程学)的决策过程。为了说明平均偏差的重要性,让我们考虑一个简单的例子。假设我们有一个班级的测试分数集:70、75、80、85和90。首先,我们通过将所有分数相加并除以分数的数量来计算均值。在这种情况下,均值是(70 + 75 + 80 + 85 + 90) / 5 = 80。接下来,我们找出每个分数与均值的绝对偏差。对于我们的例子:- |70 - 80| = 10- |75 - 80| = 5- |80 - 80| = 0- |85 - 80| = 5- |90 - 80| = 10现在,我们取这些绝对偏差的平均值来找到平均偏差。计算为:(10 + 5 + 0 + 5 + 10) / 5 = 6。这意味着,平均而言,测试分数与均值相差6分。理解平均偏差在比较不同数据集时尤其有用。例如,如果我们要比较另一个班级的测试分数:60、65、70、75和80,我们将遵循相同的过程。均值将是(60 + 65 + 70 + 75 + 80) / 5 = 64。与这个均值的绝对偏差将是:- |60 - 64| = 4- |65 - 64| = 1- |70 - 64| = 6- |75 - 64| = 11- |80 - 64| = 16为这个班级计算的平均偏差为:(4 + 1 + 6 + 11 + 16) / 5 = 7.6。这表明,第二个班级的分数与其均值的偏差更大,而第一个班级的平均偏差为6。在实际应用中,平均偏差可以指导教育工作者评估学生表现的一致性,帮助他们识别可能需要额外支持的学生。此外,企业可以利用这一指标通过分析反馈分数或销售数据来评估产品质量和客户满意度。总之,平均偏差(平均偏差)作为统计学中一个重要的离散性度量,通过提供数据点与均值之间差异的清晰图景,有助于在各个领域做出明智的决策。随着我们在日益数据驱动的世界中继续收集和分析数据,掌握像平均偏差这样的概念对于有效解读和应用统计信息变得尤为重要。

相关单词

deviation

deviation详解:怎么读、什么意思、用法