magnetic retentivity

简明释义

剩磁

英英释义

Magnetic retentivity refers to the ability of a material to retain magnetization after an external magnetic field is removed.

磁滞性是指材料在外部磁场移除后保持磁化的能力。

例句

1.In electrical engineering, understanding magnetic retentivity 磁滞效应 is crucial for designing transformers.

在电气工程中,理解magnetic retentivity 磁滞效应对变压器设计至关重要。

2.The magnetic retentivity 磁滞效应 of the material makes it suitable for permanent magnets.

该材料的magnetic retentivity 磁滞效应使其适合用于永磁体。

3.Manufacturers often test magnetic retentivity 磁滞效应 to ensure product quality in magnetic components.

制造商通常测试magnetic retentivity 磁滞效应以确保磁性组件的产品质量。

4.The higher the magnetic retentivity 磁滞效应, the better the material can maintain its magnetization.

越高的magnetic retentivity 磁滞效应,材料保持磁化能力越强。

5.In the design of hard disk drives, magnetic retentivity 磁滞效应 plays a significant role in data storage.

在硬盘驱动器的设计中,magnetic retentivity 磁滞效应在数据存储中起着重要作用。

作文

Magnetic materials have fascinated scientists and engineers for centuries, leading to numerous advancements in technology and our understanding of physics. One crucial property of magnetic materials is their ability to retain magnetization after the external magnetic field is removed. This property is known as magnetic retentivity (磁滞现象). Understanding magnetic retentivity is essential for various applications, including data storage, electric motors, and magnetic sensors.To delve deeper into this concept, we must first understand what magnetization entails. When a material is exposed to a magnetic field, the magnetic domains within the material align with the field, resulting in a net magnetic moment. However, once the external field is removed, some materials can maintain this alignment, which is where magnetic retentivity comes into play. The strength of this retained magnetization is a measure of the material's magnetic retentivity.Different materials exhibit varying levels of magnetic retentivity. For instance, ferromagnetic materials, such as iron, cobalt, and nickel, show high magnetic retentivity, making them ideal for use in permanent magnets. In contrast, paramagnetic materials have low magnetic retentivity and do not retain significant magnetization once the external field is removed. This distinction is crucial in choosing the right materials for specific applications.One significant application of magnetic retentivity is in the realm of data storage. Hard drives and magnetic tapes rely on materials that can retain magnetization to store information. The ability to maintain a stable magnetic state over time ensures that data remains intact and accessible. As technology advances, the demand for materials with higher magnetic retentivity continues to grow, pushing researchers to develop new alloys and compounds that can meet these requirements.Another area where magnetic retentivity plays a vital role is in electric motors and generators. These devices often use permanent magnets to create a magnetic field necessary for their operation. The efficiency and performance of these machines depend heavily on the magnetic retentivity of the materials used. Higher magnetic retentivity allows for more compact designs and improved energy efficiency, which are critical factors in modern engineering.Furthermore, magnetic retentivity is also essential in sensors and actuators. Devices like Hall effect sensors, which are used for measuring magnetic fields, rely on materials with specific magnetic retentivity characteristics to function effectively. The ability to accurately detect and respond to magnetic fields enhances the performance of various electronic devices, from smartphones to industrial machinery.In conclusion, magnetic retentivity (磁滞现象) is a fundamental property of magnetic materials that has far-reaching implications in technology and engineering. Its importance cannot be overstated, as it influences the design and functionality of countless devices we use every day. As research continues to advance in this field, we can expect to see even more innovative applications that leverage the unique characteristics of magnetic retentivity to enhance our technological capabilities.

磁性材料数百年来吸引着科学家和工程师的关注,促成了技术和物理学理解的众多进步。磁性材料的一个关键特性是它们在外部磁场移除后保持磁化的能力。这一特性被称为磁滞现象magnetic retentivity)。理解磁滞现象对各种应用至关重要,包括数据存储、电动机和磁传感器。要深入了解这个概念,我们首先必须明白什么是磁化。当材料暴露于磁场时,材料内部的磁畴会与该磁场对齐,从而产生净磁矩。然而,一旦外部磁场被移除,一些材料能够保持这种对齐,这就是磁滞现象的作用所在。保持的这种磁化强度是材料磁滞现象的一个衡量标准。不同的材料表现出不同程度的磁滞现象。例如,铁、钴和镍等铁磁材料显示出高磁滞现象,使它们成为永久磁铁的理想选择。相比之下,顺磁材料的磁滞现象较低,一旦外部磁场移除就不会保持显著的磁化。这种区别在选择特定应用的合适材料时至关重要。磁滞现象的一个重要应用领域是数据存储。硬盘和磁带依赖于能够保持磁化的材料来存储信息。保持稳定的磁态的能力确保数据保持完整且可访问。随着技术的进步,对具有更高磁滞现象的材料的需求持续增长,推动研究人员开发新合金和化合物以满足这些要求。磁滞现象在电动机和发电机中也发挥着至关重要的作用。这些设备通常使用永久磁铁来创建其操作所需的磁场。这些机器的效率和性能在很大程度上依赖于所用材料的磁滞现象。更高的磁滞现象允许更紧凑的设计和改善的能效,这在现代工程中是关键因素。此外,磁滞现象在传感器和执行器中也至关重要。像霍尔效应传感器这样的设备用于测量磁场,依赖于具有特定磁滞现象特性的材料以有效运作。准确检测和响应磁场的能力增强了我们日常使用的各种电子设备的性能,从智能手机到工业机械。总之,磁滞现象magnetic retentivity)是磁性材料的一种基本特性,对技术和工程有着深远的影响。它的重要性不容忽视,因为它影响着我们每天使用的无数设备的设计和功能。随着这一领域研究的不断推进,我们可以期待看到更多创新应用,利用磁滞现象的独特特性来增强我们的技术能力。

相关单词

magnetic

magnetic详解:怎么读、什么意思、用法

retentivity

retentivity详解:怎么读、什么意思、用法