longitudinal error vector

简明释义

纵向误差矢量

英英释义

A longitudinal error vector is a mathematical representation of the difference between the actual and desired longitudinal position or trajectory of an object, typically used in navigation and control systems.

纵向误差向量是实际与期望的物体纵向位置或轨迹之间差异的数学表示,通常用于导航和控制系统。

例句

1.The simulation software visualizes the longitudinal error vector during the flight test.

模拟软件在飞行测试期间可视化纵向误差向量

2.The drone's navigation system continuously adjusts the longitudinal error vector to maintain its flight path.

无人机的导航系统不断调整纵向误差向量以保持其飞行路径。

3.In autonomous vehicles, the longitudinal error vector helps in calculating the distance to the target.

在自动驾驶汽车中,纵向误差向量有助于计算与目标的距离。

4.Engineers analyze the longitudinal error vector to improve the accuracy of missile guidance systems.

工程师分析纵向误差向量以提高导弹制导系统的准确性。

5.Adjusting the longitudinal error vector is crucial for maintaining optimal performance in space missions.

调整纵向误差向量对维持太空任务的最佳性能至关重要。

作文

In the field of navigation and control systems, understanding various error metrics is crucial for improving accuracy and performance. One such important metric is the longitudinal error vector, which represents the deviation of a system's position from its desired trajectory along the longitudinal axis. This concept is particularly significant in applications such as aviation, robotics, and autonomous vehicles, where precision is paramount.The longitudinal error vector can be defined as the vector that indicates how far the current position of an object is from its intended path or goal in the forward direction. For instance, in an aircraft, this vector helps pilots and autopilot systems determine if they are on the correct flight path. If the longitudinal error vector is positive, it indicates that the aircraft is ahead of its intended path; conversely, a negative value suggests that it is lagging behind.To effectively utilize the longitudinal error vector, engineers often employ various algorithms and control strategies. These methods aim to minimize the error by adjusting the system's inputs, such as thrust or steering angles. By continuously monitoring the longitudinal error vector, systems can make real-time corrections, ensuring smoother and more accurate navigation.Moreover, the longitudinal error vector is not only relevant in aviation but also plays a vital role in ground-based autonomous systems. For example, self-driving cars use sensors and GPS data to calculate their longitudinal error vector. When navigating through city streets, these vehicles must constantly assess their position relative to the desired trajectory to avoid obstacles and ensure safe travel.Understanding the implications of the longitudinal error vector extends beyond just technical aspects; it also has significant practical applications. For instance, in the context of air traffic management, minimizing the longitudinal error vector can lead to increased efficiency and safety. By ensuring that aircraft maintain their intended paths, air traffic controllers can reduce the risk of collisions and improve overall airspace utilization.In summary, the longitudinal error vector is a critical component of modern navigation and control systems. Its ability to quantify position deviations along the longitudinal axis allows for precise adjustments and improvements in various applications, from aviation to autonomous vehicles. As technology continues to advance, the importance of accurately measuring and managing the longitudinal error vector will only grow, highlighting the need for ongoing research and development in this area. Ultimately, a deeper understanding of this vector will contribute to safer and more efficient transportation systems worldwide.

在导航和控制系统领域,理解各种误差指标对于提高准确性和性能至关重要。其中一个重要的指标是纵向误差向量,它表示系统位置相对于其期望轨迹在纵向轴上的偏差。这个概念在航空、机器人和自动驾驶车辆等应用中尤为重要,因为精确度至关重要。纵向误差向量可以定义为指示物体当前位置与其在前进方向上的预定路径或目标之间距离的向量。例如,在飞机中,这个向量帮助飞行员和自动驾驶系统确定他们是否在正确的飞行路径上。如果纵向误差向量为正值,则表示飞机处于预定路径的前方;反之,负值则表明飞机落后于预定路径。为了有效利用纵向误差向量,工程师们通常会采用各种算法和控制策略。这些方法旨在通过调整系统输入(例如推力或转向角度)来最小化误差。通过持续监测纵向误差向量,系统可以实时进行修正,从而确保更平稳、更准确的导航。此外,纵向误差向量不仅在航空中相关,而且在地面自主系统中也发挥着重要作用。例如,无人驾驶汽车使用传感器和GPS数据来计算其纵向误差向量。在城市街道上导航时,这些车辆必须不断评估其相对于期望轨迹的位置,以避免障碍物并确保安全行驶。理解纵向误差向量的意义不仅限于技术方面,它还有重要的实际应用。例如,在空中交通管理中,最小化纵向误差向量可以提高效率和安全性。通过确保飞机保持其预定路径,空中交通管制员可以降低碰撞风险,提高整体空域利用率。总之,纵向误差向量是现代导航和控制系统的关键组成部分。它能够量化纵向轴上的位置偏差,从而允许在航空到自动驾驶车辆等各种应用中进行精确调整和改进。随着技术的不断进步,准确测量和管理纵向误差向量的重要性只会增加,这突显了该领域持续研究和发展的必要性。最终,对这一向量的深入理解将有助于全球更安全、更高效的运输系统。

相关单词

longitudinal

longitudinal详解:怎么读、什么意思、用法

vector

vector详解:怎么读、什么意思、用法