liquid propellant

简明释义

液体推进剂

英英释义

A liquid propellant is a type of fuel used in rocket engines that is stored in liquid form and is capable of producing thrust when ignited.

液体推进剂是一种用于火箭发动机的燃料,储存为液态,在点燃时能够产生推力。

例句

1.The launch facility has specialized tanks for storing liquid propellant safely.

发射设施有专门的储罐用于安全存储液体推进剂

2.Engineers are testing new formulations for liquid propellant to improve efficiency.

工程师们正在测试新的液体推进剂配方以提高效率。

3.The spacecraft's engines ignited the liquid propellant to initiate its ascent.

航天器的引擎点燃了液体推进剂以启动其上升。

4.Using liquid propellant allows for greater control over the thrust during flight.

使用液体推进剂可以在飞行过程中更好地控制推力。

5.The rocket was powered by a combination of hydrogen and oxygen as its liquid propellant.

这枚火箭使用氢和氧的组合作为其液体推进剂

作文

The exploration of space has always fascinated humanity, pushing the boundaries of what we know and understand. One of the critical components that enable spacecraft to reach the vastness of the universe is the use of liquid propellant (液体推进剂). This technology has revolutionized the way rockets are designed and operated, providing a more efficient and powerful means of propulsion compared to solid fuels. In this essay, we will explore the significance of liquid propellant (液体推进剂) in modern rocketry, its advantages, and some challenges associated with its use.Firstly, liquid propellant (液体推进剂) offers a higher specific impulse than solid propellants. Specific impulse is a measure of how effectively a rocket uses propellant to produce thrust. The higher the specific impulse, the more efficient the fuel. For instance, liquid hydrogen combined with liquid oxygen can produce a specific impulse of about 450 seconds, while most solid propellants achieve around 300 seconds. This efficiency allows rockets to carry heavier payloads and travel further into space, making liquid propellant (液体推进剂) an essential choice for missions beyond Earth’s orbit.Moreover, the controllability of liquid propellant (液体推进剂) systems is another significant advantage. Unlike solid propellants, which burn at a fixed rate, liquid propellants can be throttled, stopped, or restarted as needed. This flexibility is crucial during various phases of a space mission, such as launching, orbit insertion, and landing. For example, the Space Shuttle utilized liquid propellant (液体推进剂) engines that could be controlled precisely, allowing for complex maneuvers and adjustments in flight.However, the use of liquid propellant (液体推进剂) also comes with challenges. One of the main concerns is the complexity of the fuel handling systems. Liquid propellants require intricate plumbing, pumps, and tanks to store and transport the fuel, making the design and engineering process more complicated than that of solid propellants. Additionally, safety is a paramount issue; handling highly volatile substances like liquid hydrogen and oxygen poses risks that must be meticulously managed.Furthermore, the environmental impact of liquid propellant (液体推进剂) cannot be overlooked. While many modern rockets use cleaner fuels, the production and launch processes can still contribute to greenhouse gas emissions. As the space industry continues to grow, finding sustainable solutions for propulsion will be essential for minimizing our ecological footprint.In conclusion, liquid propellant (液体推进剂) plays a vital role in the advancement of space exploration. Its efficiency and controllability make it a preferred choice for many space missions, enabling humanity to explore beyond our planet. However, the complexities and environmental considerations associated with its use highlight the need for ongoing research and innovation in propulsion technologies. As we look to the future, the development of safer and more sustainable liquid propellant (液体推进剂) options will be crucial in supporting the next generation of space exploration endeavors.

太空探索一直以来都吸引着人类,推动着我们对已知和未知的边界的探索。使航天器能够到达宇宙广阔空间的关键组成部分之一就是使用液体推进剂liquid propellant)。这一技术彻底改变了火箭的设计和操作方式,相较于固体燃料,它提供了一种更高效、更强大的推进手段。在这篇文章中,我们将探讨液体推进剂liquid propellant)在现代火箭技术中的重要性、其优势以及使用过程中面临的一些挑战。首先,液体推进剂liquid propellant)相较于固体推进剂提供了更高的比冲。比冲是衡量火箭使用推进剂产生推力效果的一个指标。比冲越高,燃料的效率就越高。例如,液氢与液氧的组合可以产生约450秒的比冲,而大多数固体推进剂的比冲约为300秒。这种效率使得火箭能够承载更重的有效载荷,并能够更远地进入太空,因此液体推进剂liquid propellant)成为了超越地球轨道任务的必选之项。此外,液体推进剂liquid propellant)系统的可控性也是一个显著的优势。与以固定速率燃烧的固体推进剂不同,液体推进剂可以根据需要进行调节、停止或重新启动。这种灵活性在太空任务的不同阶段至关重要,例如发射、轨道插入和着陆。例如,航天飞机使用的液体推进剂liquid propellant)发动机可以精确控制,从而允许在飞行中进行复杂的操作和调整。然而,使用液体推进剂liquid propellant)也带来了挑战。主要问题之一是燃料处理系统的复杂性。液体推进剂需要复杂的管道、泵和储罐来存储和运输燃料,这使得设计和工程过程比固体推进剂更为复杂。此外,安全性是一个重要问题;处理像液氢和氧这样的高度易挥发物质存在风险,必须仔细管理。此外,液体推进剂liquid propellant)的环境影响也不容忽视。虽然许多现代火箭使用更清洁的燃料,但生产和发射过程仍可能导致温室气体排放。随着航天产业的不断发展,寻找推进的可持续解决方案对于减少我们的生态足迹将至关重要。总之,液体推进剂liquid propellant)在太空探索的进展中扮演着重要角色。其效率和可控性使其成为许多太空任务的首选,推动着人类探索地球之外的领域。然而,与其使用相关的复杂性和环境考量凸显了在推进技术方面持续研究和创新的必要性。展望未来,开发更安全和更可持续的液体推进剂liquid propellant)选择对于支持下一代太空探索事业至关重要。