limit error
简明释义
极限误差
英英释义
Limit error refers to the maximum allowable error in a measurement or calculation, often defined by the specifications of a particular instrument or system. | 限差是指在测量或计算中允许的最大误差,通常由特定仪器或系统的规格定义。 |
例句
1.To improve accuracy, the technician adjusted the settings to reduce the limit error.
为了提高准确性,技术员调整设置以减少极限误差。
2.In quality control, we must keep the limit error within acceptable ranges.
在质量控制中,我们必须将极限误差保持在可接受范围内。
3.The limit error in the experiment was minimal, leading to reliable results.
实验中的极限误差很小,导致结果可靠。
4.The limit error of the measuring instrument was specified in the user manual.
测量仪器的极限误差在用户手册中有说明。
5.The engineer calculated the limit error to ensure the design met safety standards.
工程师计算了极限误差以确保设计符合安全标准。
作文
In the realm of science and engineering, precision is paramount. Every measurement we take, every calculation we perform, comes with a degree of uncertainty. This uncertainty is often quantified as an error, and one of the most critical concepts in this context is the limit error. The term limit error refers to the maximum possible error in a measurement or calculation, indicating the range within which the true value lies. Understanding limit error is essential for anyone involved in technical fields, as it helps in assessing the reliability and accuracy of results.To illustrate the importance of limit error, consider a simple example from everyday life: measuring the length of a table using a ruler. If the ruler is marked in millimeters, the smallest division might be 1 mm. If you measure the table and find it to be 200 mm, the limit error could be ±0.5 mm, meaning the actual length could be anywhere between 199.5 mm and 200.5 mm. This range is vital for anyone needing precise measurements, such as a carpenter or an engineer.The concept of limit error becomes even more critical in scientific experiments, where the accuracy of measurements can significantly affect outcomes. For instance, in a chemistry experiment, if a scientist measures the volume of a liquid using a graduated cylinder, the limit error will determine how much confidence can be placed in the results. If the limit error is large, it may indicate that the measurement is not reliable, leading to potential errors in conclusions drawn from the data.Moreover, understanding limit error is crucial when comparing different measurement instruments. Different devices have varying degrees of accuracy, and knowing the limit error associated with each can help in selecting the appropriate tool for a specific task. For example, a digital caliper might have a limit error of ±0.01 mm, while a standard ruler might have a limit error of ±0.5 mm. In situations requiring high precision, the choice of instrument becomes evident.In addition to its application in measurements, limit error also plays a significant role in statistical analysis and data interpretation. When researchers collect data, they must account for the limit error in their calculations to ensure that their findings are valid. Failing to consider this can lead to misleading conclusions, potentially affecting research outcomes and subsequent decisions based on those results.In conclusion, the concept of limit error is fundamental in various fields, including science, engineering, and statistics. It provides a framework for understanding the accuracy and reliability of measurements and calculations. By recognizing and applying the principles of limit error, professionals can enhance the quality of their work, leading to better outcomes and more informed decisions. Whether in the lab, the workshop, or the office, acknowledging the significance of limit error is essential for achieving success in any technical endeavor.
在科学和工程领域,精确性至关重要。我们所做的每一个测量和每一个计算都伴随着一定程度的不确定性。这种不确定性通常被量化为误差,而在这种情况下,最重要的概念之一就是限度误差。术语限度误差指的是测量或计算中可能出现的最大误差,表明真实值所在的范围。理解限度误差对任何从事技术领域的人来说都是必不可少的,因为它有助于评估结果的可靠性和准确性。为了说明限度误差的重要性,考虑一个来自日常生活的简单例子:使用尺子测量桌子的长度。如果尺子的刻度是以毫米为单位,最小的分度可能是1毫米。如果你测量到桌子的长度为200毫米,那么限度误差可能是±0.5毫米,这意味着实际长度可能在199.5毫米到200.5毫米之间。这个范围对任何需要精确测量的人来说都是至关重要的,比如木匠或工程师。在科学实验中,限度误差的概念变得更加关键,因为测量的准确性会显著影响结果。例如,在化学实验中,如果一名科学家使用量筒测量液体的体积,限度误差将决定可以对结果的信心有多大。如果限度误差很大,可能表明测量不可靠,从而导致从数据中得出的结论出现潜在错误。此外,理解限度误差在比较不同测量仪器时也至关重要。不同的设备具有不同的准确度,了解与每个设备相关的限度误差可以帮助选择适合特定任务的工具。例如,数字卡尺的限度误差可能是±0.01毫米,而标准尺的限度误差可能是±0.5毫米。在需要高精度的情况下,仪器的选择变得显而易见。除了在测量中的应用,限度误差在统计分析和数据解释中也发挥着重要作用。当研究人员收集数据时,他们必须考虑到计算中的限度误差,以确保他们的发现是有效的。如果不考虑这一点,可能会导致误导性的结论,从而影响基于这些结果的研究成果和后续决策。总之,限度误差的概念在科学、工程和统计等各个领域都是基础性的。它为理解测量和计算的准确性和可靠性提供了框架。通过认识和应用限度误差的原则,专业人士可以提高工作质量,从而实现更好的结果和更明智的决策。无论是在实验室、车间还是办公室,承认限度误差的重要性对于在任何技术工作中取得成功都是必不可少的。