local demagnetization
简明释义
局部消磁
英英释义
例句
1.Engineers are working on a solution to mitigate local demagnetization in electric generators.
工程师们正在研究解决方案,以减少电动发电机中的局部去磁。
2.The research indicated that local demagnetization occurs due to thermal fluctuations in high-performance magnets.
研究表明,局部去磁是由于高性能磁体中的热波动引起的。
3.The phenomenon of local demagnetization can be detrimental to the lifespan of electronic components.
这种局部去磁现象可能对电子元件的寿命产生不利影响。
4.The technician observed that the motor was experiencing local demagnetization, which led to reduced efficiency.
技术人员观察到电机经历了局部去磁,这导致效率降低。
5.In magnetic storage devices, local demagnetization can result in data loss if not properly managed.
在磁存储设备中,如果管理不当,局部去磁可能导致数据丢失。
作文
In the field of magnetism, understanding the concept of local demagnetization is crucial for both theoretical and practical applications. Local demagnetization refers to the phenomenon where a specific region within a magnetic material loses its magnetization due to various factors such as temperature changes, mechanical stress, or external magnetic fields. This localized loss of magnetization can significantly affect the overall magnetic properties of the material, making it essential to study this effect in detail.One of the primary reasons for local demagnetization is the presence of defects or impurities within the magnetic material. These imperfections can disrupt the alignment of magnetic domains, which are the small regions where the magnetic moments of atoms are aligned in the same direction. When a defect is present, it can act as a barrier that prevents the magnetic domains from aligning properly, leading to a reduction in magnetization in that particular area.Another factor contributing to local demagnetization is the application of external magnetic fields. When a magnetic material is subjected to a strong external magnetic field, it can cause a reorientation of the magnetic domains. If the external field is removed, some of these domains may not return to their original alignment, resulting in a permanent loss of magnetization in certain areas. This effect is particularly pronounced in materials that have low coercivity, meaning they are easily demagnetized.Temperature also plays a significant role in local demagnetization. As the temperature of a magnetic material increases, the thermal energy can cause the magnetic moments of the atoms to become disordered. This disorder can lead to a decrease in magnetization, especially if the material is near its Curie temperature, the point at which it transitions from a ferromagnetic to a paramagnetic state. In such cases, localized regions within the material may experience different levels of magnetization due to variations in temperature, leading to local demagnetization.The implications of local demagnetization are vast in various applications, including data storage technologies, electric motors, and magnetic sensors. For instance, in hard disk drives, localized demagnetization can affect the integrity of stored data. If certain areas of the magnetic medium lose their magnetization, it can result in data loss or corruption. Therefore, engineers and scientists must consider local demagnetization when designing and optimizing magnetic materials for these applications.Furthermore, understanding local demagnetization can lead to the development of new materials with improved magnetic properties. By studying how different factors contribute to this phenomenon, researchers can design materials that are more resistant to demagnetization, enhancing their performance in various applications. For example, alloying certain metals or introducing specific microstructures can help mitigate the effects of local demagnetization, leading to more reliable and efficient magnetic devices.In conclusion, local demagnetization is a critical concept in magnetism that has significant implications for both fundamental research and practical applications. By understanding the mechanisms behind this phenomenon, scientists and engineers can develop better materials and devices that leverage magnetic properties effectively. As technology continues to advance, the study of local demagnetization will remain an important area of research, driving innovation in various fields, including electronics, energy, and materials science.
在磁学领域,理解“局部去磁”这一概念对于理论和实际应用至关重要。“局部去磁”是指在磁性材料的特定区域,由于温度变化、机械应力或外部磁场等各种因素,导致其失去磁化现象。这种局部的磁化损失可以显著影响材料的整体磁性,因此深入研究这一效应是非常必要的。造成“局部去磁”的主要原因之一是磁性材料中存在缺陷或杂质。这些缺陷会干扰磁畴的排列,磁畴是小区域,其中原子的磁矩朝同一方向排列。当存在缺陷时,它可能会作为障碍,阻止磁畴的正常排列,从而导致该特定区域的磁化减少。外部磁场的作用也是导致“局部去磁”的一个因素。当磁性材料受到强外部磁场的作用时,会导致磁畴的重新取向。如果外部磁场被移除,这些磁畴中的一些可能不会恢复到原来的排列,从而导致某些区域的永久性磁化损失。这种效应在低矫顽力的材料中尤为明显,这意味着它们容易被去磁化。温度在“局部去磁”中也起着重要作用。随着磁性材料温度的升高,热能可能导致原子的磁矩变得无序。这种无序可能导致磁化的减少,尤其是当材料接近其居里温度时,居里温度是材料从铁磁态转变为顺磁态的点。在这种情况下,材料内部的局部区域可能由于温度的变化而经历不同程度的磁化,导致“局部去磁”。“局部去磁”的影响在各种应用中是广泛的,包括数据存储技术、电动机和磁传感器。例如,在硬盘驱动器中,局部去磁可能会影响存储数据的完整性。如果磁介质的某些区域失去磁化,可能导致数据丢失或损坏。因此,工程师和科学家在设计和优化这些应用的磁性材料时必须考虑“局部去磁”。此外,理解“局部去磁”可以促使新材料的开发,以改善其磁性特性。通过研究不同因素如何影响这一现象,研究人员可以设计出更具抗去磁能力的材料,提高其在各种应用中的性能。例如,合金化某些金属或引入特定微观结构可以帮助减轻“局部去磁”的影响,从而导致更可靠和高效的磁性设备。总之,“局部去磁”是磁学中的一个关键概念,对基础研究和实际应用具有重要意义。通过理解这一现象背后的机制,科学家和工程师可以开发出更好的材料和设备,有效利用磁性特性。随着技术的不断进步,“局部去磁”的研究将继续成为一个重要的研究领域,推动电子、能源和材料科学等各个领域的创新。
相关单词