nonadiabatic

简明释义

[ˌnɒn.əˈdaɪ.ə.bæt.ɪk][ˌnɒn.əˈdaɪ.ə.bæt.ɪk]

adj. 非绝热的

英英释义

Nonadiabatic refers to processes or phenomena in which heat exchange occurs with the surroundings, leading to changes in temperature and energy levels that are not solely dependent on the system's internal state.

非绝热指的是与周围环境发生热交换的过程或现象,这导致温度和能量水平的变化不仅仅依赖于系统的内部状态。

单词用法

同义词

non-adiabatic

非绝热的

In a non-adiabatic process, heat can be exchanged with the surroundings.

在非绝热过程中,热量可以与周围环境交换。

open system

开放系统

An open system allows for energy transfer, making it non-adiabatic.

开放系统允许能量转移,使其成为非绝热的。

irreversible process

不可逆过程

Irreversible processes often involve nonadiabatic interactions.

不可逆过程通常涉及非绝热相互作用。

反义词

adiabatic

绝热的

The process was assumed to be adiabatic for simplification.

为了简化,假设该过程是绝热的。

isothermal

等温的

In an isothermal process, the temperature remains constant.

在等温过程中,温度保持不变。

例句

1.The temperature dependence of resistivity at high temperature is well fit by nonadiabatic small polaron hopping model for LCBMO and LSBMO samples, and their activation energies are obtained.

用非绝热小极化子跃迁模型对高温的电阻特性进行拟合处理,得到了激活能;

2.The temperature dependence of resistivity at high temperature is well fit by nonadiabatic small polaron hopping model for LCBMO and LSBMO samples, and their activation energies are obtained.

用非绝热小极化子跃迁模型对高温的电阻特性进行拟合处理,得到了激活能;

3.It describes a local blocking flow pattern developed under the joint action of nonadiabatic heating, dissipation, nonlinear advection and the linear dispersion.

这个定常解描述了非绝热加热、耗散、非线性平流和线性频散共同作用所形成的阻塞流型。

4.We derive formulae of how to calculate the geometric and dynamic phases for spin-1 particle in adiabatic and nonadiabatic evolutions, and calculate the phases by using these formulae.

推导出如何计算自旋为1的粒子在绝热和非绝热演化中的几何相位和动力学相位公式,并利用这些公式计算其相位。

5.A new cascade nonlinear inferential control strategy for a nonadiabatic fixed bed reactor based on improved hybrid model is proposed.

提出了非绝热式固定床反应器基于改进混合模型的串级非线性推断控制策略。

6.By quantum jump method, we find that the corrections to its phase for the no-jump trajectory are different when considering adiabatic and nonadiabatic evolutions.

利用量子跃迁方法,当考虑绝热和非绝热演化时,发现对于非跃迁轨道,其相位修正值是不同的。

7.However the total phase in a nonadiabatic cyclic evolution generally consists of both the geometric and dynamical phases.

然而在一次非绝热循环演化过程中,总的相位包括几何相和动力学相。

8.Researchers are investigating nonadiabatic 非绝热的 dynamics in photochemical processes.

研究人员正在调查光化学过程中的非绝热的动力学。

9.The nonadiabatic 非绝热的 behavior of electrons can lead to unexpected results in material properties.

电子的非绝热的行为可能导致材料性质的意外结果。

10.The study of nonadiabatic 非绝热的 effects is crucial for understanding chemical reactions at the molecular level.

研究非绝热的效应对理解分子层面的化学反应至关重要。

11.In quantum mechanics, the transition between energy levels can be described as a nonadiabatic 非绝热的 process when external conditions change rapidly.

在量子力学中,当外部条件快速变化时,能级之间的跃迁可以被描述为一个非绝热的过程。

12.In semiconductor physics, nonadiabatic 非绝热的 transitions can affect the performance of electronic devices.

在半导体物理中,非绝热的跃迁可能影响电子设备的性能。

作文

In the realm of physics and chemistry, the concept of nonadiabatic processes plays a crucial role in understanding how systems exchange energy with their surroundings. Unlike adiabatic processes, where no heat is exchanged, nonadiabatic processes involve the transfer of energy, leading to significant implications in various scientific fields. For example, in quantum mechanics, nonadiabatic transitions occur when a system undergoes a change that is rapid enough that it cannot be treated as a slow, gradual process. This phenomenon is particularly evident in molecular dynamics, where molecules can transition between different electronic states due to the influence of external forces or fields.To better understand nonadiabatic processes, consider the example of a chemical reaction. In a typical reaction, reactants may undergo a series of transformations before becoming products. If these transformations happen slowly, they can often be described using adiabatic assumptions, meaning that the system remains in thermal equilibrium with its surroundings. However, if the reaction occurs rapidly, the system may not have enough time to adjust, resulting in nonadiabatic behavior. This can lead to unexpected outcomes, such as the formation of intermediate species or the release of excess energy in the form of heat or light.The significance of nonadiabatic processes extends beyond theoretical discussions; they are essential for practical applications. For instance, in the development of solar cells, understanding nonadiabatic transitions helps scientists design materials that can efficiently convert sunlight into electrical energy. When photons strike the material, they can induce nonadiabatic transitions that allow electrons to move from a lower energy state to a higher one, ultimately generating an electric current.Moreover, nonadiabatic effects are also observed in biological systems. Photosynthesis, for example, involves complex nonadiabatic processes where light energy is converted into chemical energy. The efficiency of this conversion depends on how well the system can manage energy transfer at the molecular level. Any disruptions in these nonadiabatic pathways can significantly affect the overall efficiency of photosynthesis, impacting plant growth and, consequently, the entire ecosystem.In conclusion, the study of nonadiabatic processes is vital for advancing our understanding of both fundamental science and practical applications. From chemical reactions to energy conversion in solar cells and biological systems, nonadiabatic effects are pervasive and influential. As research continues to uncover the intricacies of these processes, we can expect to see further innovations that harness the power of nonadiabatic phenomena to improve technology and address global challenges such as energy sustainability and environmental conservation.

在物理和化学领域,非绝热过程的概念在理解系统如何与周围环境交换能量方面发挥着至关重要的作用。与没有热量交换的绝热过程不同,非绝热过程涉及能量的转移,这在各个科学领域都具有重要的意义。例如,在量子力学中,当一个系统经历变化时,如果变化足够迅速,无法被视为缓慢、逐渐的过程,就会发生非绝热跃迁。这种现象在分子动力学中尤为明显,分子由于外部力或场的影响,可以在不同的电子状态之间发生跃迁。为了更好地理解非绝热过程,可以考虑化学反应的例子。在典型反应中,反应物可能经历一系列转变,然后变成产物。如果这些转变发生得很慢,通常可以使用绝热假设来描述,这意味着系统与其周围环境保持热平衡。然而,如果反应发生得很快,系统可能没有足够的时间进行调整,从而导致非绝热行为。这可能导致意想不到的结果,例如形成中间物种或以热量或光的形式释放过量的能量。非绝热过程的重要性不仅限于理论讨论;它们对实际应用至关重要。例如,在太阳能电池的开发中,理解非绝热跃迁帮助科学家设计能够有效将阳光转化为电能的材料。当光子撞击材料时,它们可以诱导非绝热跃迁,使电子从较低能量状态移动到较高能量状态,最终产生电流。此外,非绝热效应也在生物系统中观察到。例如,光合作用涉及复杂的非绝热过程,其中光能转化为化学能。这种转化的效率取决于系统在分子水平上管理能量转移的能力。任何对这些非绝热途径的干扰都可能显著影响光合作用的整体效率,进而影响植物生长,并最终影响整个生态系统。总之,研究非绝热过程对于推进我们对基础科学和实际应用的理解至关重要。从化学反应到太阳能电池和生物系统中的能量转化,非绝热效应无处不在且影响深远。随着研究继续揭示这些过程的复杂性,我们可以期待看到进一步的创新,利用非绝热现象的力量来改善技术并应对全球挑战,如能源可持续性和环境保护。