resultant
简明释义
adj. <正式>由此引起的,因而发生的
n. 合力,合成速率,合成矢量;结果
复 数 r e s u l t a n t s
英英释义
单词用法
n. [机]合力 |
同义词
结果的;随之发生的 | The consequent changes in policy led to improved performance. | 随之而来的政策变化导致了业绩的改善。 | |
结果;后果 | 实验的结果并不是我们预期的。 | ||
效果;影响 | 新法律的效果仍在研究中。 | ||
结果;成效 | 会议的结果是制定了一个新的发展计划。 |
反义词
例句
1.There is no change in the motion of a body unless a resultant force is acting upon it.
除非有一合力作用于物体上,否则物体的方向是不会发生变化的。
2.The utility:graph() function constructs the URL and returns the resultant img element.
graph()函数构造这个URL,返回结果为 img 元素。
3.The resultant published pages will look like Figure 16.
结果发布的网页如图 16 所示。
4.There was a fight, and the resultant damage was serious.
发生了一场战斗,其结果损失严重。
5.When the waves are short, they go with the jet's flow and the resultant wiggling heads downstream to the east.
当波长短时,他们与急流相向流动,所形成的振荡沿下向东移动。
6.Resultant colour may vary between dark bronze and light blonde depending on your hair's natural pigmentation.
结果所得的颜色可能在深褐与浅金色之间,当然那取决于你毛发的本色。
7.The resultant type of any expression.
所有表达式的结果类型
8.The resultant changes in temperature were due to the seasonal transition.
温度的结果变化是由于季节的转换。
9.In physics, the resultant of multiple vectors can be calculated using graphical methods.
在物理学中,可以使用图形方法计算多个矢量的结果。
10.After analyzing the data, we found a resultant trend that indicates a shift in consumer behavior.
在分析数据后,我们发现了一个结果趋势,表明消费者行为的变化。
11.The resultant force on the object is the vector sum of all the forces acting on it.
物体上的结果力是作用在它上面的所有力的矢量和。
12.The resultant velocity of the car was affected by both wind and road conditions.
汽车的结果速度受风和路况的影响。
作文
In the realm of science and mathematics, the term resultant refers to a quantity that is derived from two or more other quantities. This concept is particularly important in physics, where forces are often combined to determine the overall effect on an object. The resultant force, for example, is the single force that represents the combined effect of multiple forces acting on an object. Understanding this principle is essential for solving problems related to motion, equilibrium, and dynamics.Consider a scenario where two people are pushing a car in different directions. One person pushes north with a force of 100 Newtons, while the other pushes east with a force of 50 Newtons. To find the resultant force, we can use vector addition. The resultant force is not simply the sum of the two forces but rather a vector that takes into account both magnitude and direction. By applying the Pythagorean theorem, we can calculate the magnitude of the resultant force as follows: R = √(100² + 50²) = √(10000 + 2500) = √12500 ≈ 111.8 Newtons. The direction of this resultant force can also be determined using trigonometric functions. By calculating the angle θ using the tangent function, we find:θ = arctan(50/100) = arctan(0.5) ≈ 26.57 degrees. Thus, the resultant force of 111.8 Newtons acts at an angle of approximately 26.57 degrees from the north towards the east. This example illustrates how the concept of resultant is crucial for understanding the net effect of multiple forces.Beyond physics, the term resultant can also apply to various fields such as economics and social sciences. For instance, when analyzing the impact of different economic policies, researchers may look at the resultant effects of these policies on unemployment rates, inflation, and overall economic growth. By examining the resultant outcomes, policymakers can make more informed decisions that consider the complex interactions between various factors.In everyday life, we encounter resultant situations frequently. For example, when planning a trip, one must consider various factors such as travel time, cost, and personal preferences. The resultant decision about which route to take or which mode of transportation to use is influenced by all these variables. In this way, the concept of resultant transcends academic disciplines and permeates our daily decision-making processes.In conclusion, the term resultant encapsulates the idea of deriving a single outcome from multiple influencing factors. Whether in physics, economics, or everyday life, understanding how to calculate and interpret resultant quantities is vital for making sense of complex scenarios. By mastering this concept, individuals can enhance their problem-solving skills and make more informed choices in various aspects of life.
在科学和数学领域,术语resultant指的是从两个或多个其他量中得出的量。这个概念在物理学中尤为重要,因为力通常会结合起来以确定对物体的整体影响。例如,resultant力是表示作用于物体的多个力的综合效应的单一力。理解这一原理对于解决与运动、平衡和动力学相关的问题至关重要。考虑一个场景,其中两个人朝不同方向推一辆车。一个人以100牛顿的力量向北推,而另一个人以50牛顿的力量向东推。为了找出resultant力,我们可以使用矢量加法。resultant力不仅仅是两个力的简单相加,而是一个考虑到大小和方向的矢量。通过应用勾股定理,我们可以计算出resultant力的大小如下:R = √(100² + 50²) = √(10000 + 2500) = √12500 ≈ 111.8牛顿。这个resultant力的方向也可以通过三角函数来确定。通过计算角度θ,我们发现:θ = arctan(50/100) = arctan(0.5) ≈ 26.57度。因此,111.8牛顿的resultant力大约以26.57度的角度从北向东作用。这个例子说明了resultant概念对于理解多个力的净效应的重要性。除了物理学,术语resultant还可以应用于经济学和社会科学等各个领域。例如,在分析不同经济政策的影响时,研究人员可能会关注这些政策对失业率、通货膨胀和整体经济增长的resultant效应。通过考察resultant结果,决策者可以做出更明智的决定,考虑到各种因素之间的复杂相互作用。在日常生活中,我们经常会遇到resultant的情况。例如,在计划旅行时,人们必须考虑旅行时间、费用和个人偏好等各种因素。关于选择哪条路线或使用哪种交通方式的resultant决定受到所有这些变量的影响。通过这种方式,resultant的概念超越了学术学科,渗透到我们日常决策过程中。总之,术语resultant概括了从多个影响因素中得出单一结果的想法。无论是在物理学、经济学还是日常生活中,理解如何计算和解释resultant量对于理解复杂情境至关重要。通过掌握这个概念,个人可以增强他们的解决问题的能力,并在生活的各个方面做出更明智的选择。