tessellation

简明释义

[ˌtesɪˈleɪʃən][ˌtesɪˈleɪʃn]

n. 棋盘形布置;棋盘花纹镶嵌;镶嵌式铺装;镶嵌细工;棋盘花纹

英英释义

A tessellation is a pattern of shapes that fit together perfectly without any gaps or overlaps, often covering a plane completely.

镶嵌是一种形状的图案,完美地结合在一起,没有任何缝隙或重叠,通常完全覆盖一个平面。

单词用法

geometric tessellation

几何镶嵌

regular tessellation

规则镶嵌

irregular tessellation

不规则镶嵌

tessellation pattern

镶嵌图案

create a tessellation

创建一个镶嵌

study tessellation

研究镶嵌

tessellation of shapes

形状的镶嵌

explore tessellation

探索镶嵌

同义词

tiling

铺砖

The artist used tiling techniques to create a stunning floor design.

艺术家使用铺砖技术创造了一个令人惊叹的地板设计。

mosaic

马赛克

The mosaic on the wall tells a beautiful story of the city's history.

墙上的马赛克讲述了这个城市历史的美丽故事。

patterning

图案化

Patterning in nature can often resemble tessellation.

自然界中的图案化常常与镶嵌相似。

反义词

disjointed

不相连的

The pieces of the puzzle were disjointed and did not fit together.

拼图的碎片不相连,无法拼合在一起。

scattered

分散的

The scattered leaves covered the ground after the storm.

风暴过后,分散的树叶覆盖了地面。

例句

1.Reduced terrain mesh popping from over-aggressive tessellation.

降低地形网格出现在激进的镶嵌。

2.Each cell in a Voronoi tessellation is a convex polyhedron.

泰森多边形法中的每个细胞镶嵌是一个凸多面体。

3.Usually, tessellation can be managed by processor but the presence of dedicated unit makes this process more effective.

通常,镶嵌,可管理的处理器,但在场的专门单位,使这一进程更加有效。

4.This property is unavailable if the tessellation scheme is a geography grid.

分割方案为地理网格时,此属性不可用。

5.Tessellation is used to alter the geometric detail in a mesh by dynamically generating more triangles to achieve a higher surface detail and a smoother result.

镶嵌是用来改变的几何细节的网格中动态生成更多的三角形来实现更高的表面细节和平滑的结果。

6.Hemlock doubles the tessellation power of 5870, so it is pretty obvious why that comparison was not made.

铁杉的两倍,5870镶嵌的权力,因此它是很明显的比较,为什么没有。

7.The floor of the cathedral featured intricate tessellations that captivated visitors.

大教堂的地板上有复杂的镶嵌图案,吸引了游客的目光。

8.Many computer graphics use tessellation to render images more efficiently.

许多计算机图形使用镶嵌图案来更高效地渲染图像。

9.In mathematics, tessellation refers to covering a surface with shapes without any gaps or overlaps.

在数学中,镶嵌图案指的是用形状覆盖一个表面而不留任何缝隙或重叠。

10.The artist used a beautiful tessellation to create a stunning mural on the wall.

艺术家使用了美丽的镶嵌图案在墙上创作了一幅惊艳的壁画。

11.The tessellation of tiles in the bathroom created a modern and stylish look.

浴室瓷砖的镶嵌图案营造出现代而时尚的外观。

作文

Tessellation is a fascinating concept that can be observed in various fields, including art, architecture, and mathematics. It refers to the covering of a plane with a pattern of one or more geometric shapes, called tiles, with no overlaps or gaps. The beauty of tessellation (镶嵌) lies in its ability to create intricate designs that are both visually appealing and mathematically intriguing. Artists like M.C. Escher have famously utilized tessellation (镶嵌) techniques to produce mesmerizing works that challenge our perception of space and dimension.In mathematics, tessellation (镶嵌) is studied in the context of geometry. Regular polygons, such as squares, triangles, and hexagons, can be used to create tessellations (镶嵌图案) that fill a plane completely. For example, a square can tile a floor without leaving any gaps, while hexagons can fit together perfectly to form honeycomb structures. This mathematical property makes tessellation (镶嵌) a subject of interest in both theoretical and applied mathematics.The concept of tessellation (镶嵌) also extends into nature, where we can find examples in the arrangement of leaves, the patterns on animal skins, and even in crystal formations. The natural world often employs tessellation (镶嵌) to optimize space and resources. For instance, the way bees construct their hives using hexagonal cells demonstrates an efficient use of materials and space, showcasing the practicality of tessellation (镶嵌) in biological systems.In art, tessellation (镶嵌) serves as a powerful tool for creativity. Artists can explore the interplay of colors and shapes, creating dynamic compositions that draw the viewer's eye. The process of designing a tessellation (镶嵌) often involves understanding symmetry and transformations such as rotation, reflection, and translation. This exploration not only enhances artistic skills but also deepens one's appreciation for geometry and spatial relationships.Educationally, teaching tessellation (镶嵌) concepts can engage students in both math and art. By combining these disciplines, educators can foster a more holistic understanding of how mathematics influences creative expression. Students can experiment with creating their own tessellations (镶嵌图案), learning about angles, symmetry, and patterns in the process. This hands-on approach encourages critical thinking and problem-solving skills, making learning both enjoyable and effective.In conclusion, tessellation (镶嵌) is a multifaceted concept that bridges the gap between art and mathematics. Its presence in nature, art, and educational practices highlights its significance in our understanding of the world. Whether through the intricate designs of M.C. Escher, the efficient structures of honeycombs, or the engaging classroom activities, tessellation (镶嵌) continues to inspire creativity and curiosity. As we explore this captivating topic, we gain insights into the harmony between form and function, revealing the underlying patterns that shape our environment.

镶嵌是一个迷人的概念,可以在艺术、建筑和数学等多个领域观察到。它指的是用一种或多种几何形状(称为瓷砖)覆盖平面,且没有重叠或间隙。tessellation(镶嵌)的美在于它能够创造出复杂的设计,这些设计既视觉上吸引人,又在数学上引人入胜。像M.C. Escher这样的艺术家就著名地利用了tessellation(镶嵌)技术,创作出迷人的作品,挑战我们对空间和维度的感知。在数学中,tessellation(镶嵌)是在几何学的背景下研究的。规则多边形,如正方形、三角形和六边形,可以用来创建完全填充平面的tessellations(镶嵌图案)。例如,正方形可以无缝地铺设地板,而六边形可以完美地拼合在一起形成蜂窝结构。这种数学特性使得tessellation(镶嵌)成为理论和应用数学中一个有趣的主题。tessellation(镶嵌)的概念也扩展到自然界,我们可以在叶子的排列、动物皮肤的图案甚至晶体形成中找到例子。自然界常常采用tessellation(镶嵌)来优化空间和资源。例如,蜜蜂使用六边形单元构建巢穴的方式展示了材料和空间的高效使用,展示了生物系统中tessellation(镶嵌)的实用性。在艺术中,tessellation(镶嵌)作为一种强大的创作工具。艺术家可以探索颜色和形状的相互作用,创造出动态的构图,吸引观众的目光。设计tessellation(镶嵌)通常涉及理解对称性和变换,例如旋转、反射和位移。这种探索不仅增强了艺术技能,还加深了人们对几何和空间关系的欣赏。在教育方面,教授tessellation(镶嵌)概念可以让学生参与数学和艺术的学习。通过结合这两个学科,教育工作者可以培养学生对数学如何影响创作表达的更全面理解。学生可以尝试创作自己的tessellations(镶嵌图案),在此过程中学习角度、对称性和图案。这种动手实践的方法鼓励批判性思维和解决问题的能力,使学习既愉快又有效。总之,tessellation(镶嵌)是一个多方面的概念,它弥合了艺术与数学之间的鸿沟。它在自然、艺术和教育实践中的存在突显了它在我们理解世界中的重要性。无论是通过M.C. Escher的复杂设计、蜂窝的高效结构,还是引人入胜的课堂活动,tessellation(镶嵌)继续激发创造力和好奇心。当我们探索这个迷人的主题时,我们获得了对形式与功能之间和谐关系的深入见解,揭示了塑造我们环境的基本模式。