integrable function

简明释义

可积函数

英英释义

An integrable function is a function for which the integral (the area under the curve) can be calculated over a specified interval.

可积函数是指在指定区间内可以计算其积分(曲线下方的面积)的函数。

例句

1.To find the total distance traveled, we need to integrate the integrable function 可积函数 that represents speed over time.

为了找到总行驶距离,我们需要对表示速度随时间变化的可积函数进行积分。

2.The area under the curve can be calculated using an integrable function 可积函数.

可以通过一个可积函数计算曲线下方的面积。

3.A bounded integrable function 可积函数 is essential for applying the Fundamental Theorem of Calculus.

有界的可积函数对于应用微积分基本定理至关重要。

4.In calculus, we often study the properties of an integrable function 可积函数 to understand its behavior over a given interval.

在微积分中,我们常常研究一个可积函数的性质,以理解它在给定区间上的行为。

5.In probability theory, the expected value is computed using an integrable function 可积函数 that describes the distribution of a random variable.

在概率论中,期望值是通过描述随机变量分布的可积函数计算的。

作文

In the realm of mathematics, particularly in calculus and analysis, the concept of an integrable function plays a crucial role. An integrable function is defined as a function for which an integral can be calculated over a specified interval. This means that the area under the curve of the function can be quantified, which is fundamental in various applications ranging from physics to economics. Understanding what makes a function integrable is essential for students and professionals alike, as it lays the groundwork for more advanced topics such as differential equations and real analysis.To grasp the significance of an integrable function, we first need to explore the concept of integration itself. Integration is the process of finding the integral of a function, which can be thought of as the accumulation of quantities, such as areas or volumes. For a function to be integrable, it must meet certain criteria, primarily related to its continuity and boundedness. For instance, a continuous function defined on a closed interval [a, b] is always integrable. In contrast, functions that exhibit discontinuities or are unbounded may not be integrable in the traditional sense.One of the most common types of integrals is the Riemann integral, named after the mathematician Bernhard Riemann. A function is said to be Riemann integrable if the limit of the Riemann sums converges to a specific value as the partition of the interval becomes finer. This ties back to the idea of approximating the area under the curve using rectangles, where the height of each rectangle corresponds to the function's value at specific points. If the function is integrable, the sum of the areas of these rectangles approaches the exact area under the curve as the number of rectangles increases.However, not all functions are Riemann integrable. For example, the characteristic function of the rational numbers on the interval [0, 1] is not integrable because it is discontinuous everywhere. This leads us to the concept of Lebesgue integration, which broadens the definition of integrable functions to include more complex cases. Lebesgue integration allows us to integrate functions that are not Riemann integrable by measuring the 'size' of the set where the function takes on certain values, rather than relying solely on partitions of intervals.The implications of being able to determine whether a function is integrable extend beyond theoretical mathematics. In practical terms, integrable functions are essential in fields like physics, where they are used to calculate quantities such as work done by a force or the center of mass of an object. In economics, integrable functions can represent consumer and producer surplus, helping analysts understand market dynamics better.In conclusion, the concept of an integrable function is foundational in mathematics, impacting various disciplines and applications. By understanding the criteria that make a function integrable, one can appreciate the broader implications of integration in both theoretical and practical contexts. Mastery of this concept not only enhances mathematical proficiency but also equips individuals with the tools to tackle real-world problems that involve accumulation and change.

在数学领域,特别是在微积分和分析中,可积函数的概念发挥着至关重要的作用。可积函数被定义为在指定区间内可以计算积分的函数。这意味着该函数曲线下的面积可以量化,这在物理学到经济学的各种应用中都是基础。理解使函数成为可积的条件对于学生和专业人士来说至关重要,因为这为更高级的主题,如微分方程和实分析奠定了基础。要理解可积函数的重要性,我们首先需要探索积分本身的概念。积分是寻找函数的积分的过程,可以被视为数量的累积,例如面积或体积。为了使一个函数成为可积的,它必须满足某些标准,主要与其连续性和有界性有关。例如,在闭区间[a, b]上定义的连续函数总是可积的。相反,表现出不连续性或无界的函数可能在传统意义上不是可积的。最常见的积分类型之一是黎曼积分,以数学家伯恩哈德·黎曼命名。如果一个函数的黎曼和的极限随着区间的划分变得更加精细而收敛到特定值,则该函数被称为黎曼可积。这与使用矩形近似曲线下的面积的思想有关,其中每个矩形的高度对应于函数在特定点的值。如果该函数是可积的,则这些矩形的面积之和随着矩形数量的增加而接近曲线下的确切面积。然而,并非所有函数都是黎曼可积的。例如,区间[0, 1]上有理数的特征函数在任何地方都不连续,因此不是可积的。这引出了勒贝格积分的概念,它将可积函数的定义扩展到包含更复杂的情况。勒贝格积分通过测量函数在某些值上取值的集合的“大小”,而不仅仅依赖于区间的划分,从而使我们能够对不是黎曼可积的函数进行积分。确定一个函数是否为可积的影响超越理论数学。在实际层面上,可积函数在物理学等领域是必不可少的,用于计算如力所做的功或物体的质心等量。在经济学中,可积函数可以表示消费者和生产者剩余,帮助分析师更好地理解市场动态。总之,可积函数的概念在数学中是基础性的,影响着各个学科和应用。通过理解使函数成为可积的标准,人们可以欣赏到积分在理论和实践背景中的更广泛影响。掌握这一概念不仅增强了数学能力,还为个人提供了解决涉及积累和变化的现实世界问题的工具。

相关单词

integrable

integrable详解:怎么读、什么意思、用法