impact ionization

简明释义

碰撞电离

英英释义

Impact ionization is a process in which an energetic electron collides with an atom or molecule, causing the ejection of another electron and resulting in the formation of additional charge carriers.

撞击电离是一个过程,其中一个能量较高的电子与一个原子或分子碰撞,导致另一个电子被弹出,从而形成额外的电荷载体。

例句

1.Understanding impact ionization helps in designing better high-voltage devices.

了解撞击电离有助于设计更好的高压设备。

2.In semiconductor physics, impact ionization refers to the process where high-energy carriers create additional charge carriers by colliding with atoms.

在半导体物理中,撞击电离指的是高能载流子通过与原子碰撞产生额外电荷载流子的过程。

3.The phenomenon of impact ionization can lead to device breakdown if not properly managed.

如果没有适当管理,撞击电离现象可能导致设备失效。

4.The efficiency of a photodetector can be greatly enhanced by optimizing impact ionization rates.

通过优化撞击电离速率,可以大大提高光电探测器的效率。

5.In avalanche photodiodes, impact ionization is crucial for the multiplication of charge carriers.

在雪崩光电二极管中,撞击电离对于电荷载流子的倍增至关重要。

作文

Impact ionization is a fundamental process that occurs in various fields of physics and engineering, particularly in semiconductor technology. This phenomenon involves the generation of electron-hole pairs when a high-energy carrier, such as an electron, collides with an atom or a lattice site in a material. The term impact ionization refers to this specific interaction, where the kinetic energy of the incoming particle is sufficient to dislodge electrons from their atomic bonds, thereby creating free charge carriers. Understanding impact ionization is crucial for the development of advanced electronic devices, including transistors and photodetectors.In semiconductor materials, impact ionization plays a vital role in determining the efficiency and performance of devices. For instance, in avalanche photodiodes, the impact ionization process is utilized to amplify weak optical signals. When a photon strikes the semiconductor, it can generate an electron that gains enough energy through the electric field present in the device. Upon colliding with other atoms, this energetic electron can cause additional ionizations, leading to a cascade effect that significantly increases the number of charge carriers. This amplification is essential for detecting low levels of light in applications such as telecommunications and medical imaging.Moreover, impact ionization is also a critical mechanism in the operation of bipolar junction transistors (BJTs) and metal-oxide-semiconductor field-effect transistors (MOSFETs). In these devices, the control of current flow relies on the careful management of charge carriers. The rate of impact ionization can influence the breakdown voltage and overall reliability of these components. Engineers and scientists must consider this effect when designing circuits to ensure that they operate within safe limits and maintain optimal performance.Another important aspect of impact ionization is its temperature dependence. As temperature increases, the likelihood of impact ionization occurring also rises due to the increased thermal energy available to charge carriers. This relationship has significant implications for the thermal management of electronic devices, as excessive heating can lead to unwanted ionization and ultimately device failure. Therefore, understanding the dynamics of impact ionization is essential for improving the thermal stability of semiconductors.In conclusion, impact ionization is a key concept in the field of semiconductor physics that describes the generation of electron-hole pairs through high-energy collisions. Its applications are widespread, influencing the design and functionality of numerous electronic devices. By studying impact ionization, researchers can enhance the performance of existing technologies while paving the way for future innovations in electronics. As we continue to push the boundaries of what is possible in the realm of semiconductors, a deep understanding of impact ionization will remain essential for engineers and scientists alike.

碰撞电离是发生在物理学和工程学各个领域的基本过程,尤其是在半导体技术中。这种现象涉及到当高能载流子(如电子)与材料中的原子或晶格位点碰撞时,产生电子-空穴对。术语impact ionization指的就是这种特定的相互作用,其中入射粒子的动能足以使电子从其原子键中脱离,从而产生自由电荷载流子。理解impact ionization对于先进电子设备的发展至关重要,包括晶体管和光电探测器。在半导体材料中,impact ionization在决定器件的效率和性能方面起着至关重要的作用。例如,在雪崩光电二极管中,impact ionization过程被用来放大微弱的光信号。当光子击中半导体时,它可以生成一个电子,该电子通过设备中的电场获得足够的能量。在与其他原子碰撞时,这个高能电子可以导致额外的电离,从而导致级联效应,显著增加电荷载流子的数量。这种放大对于在电信和医学成像等应用中检测低光水平至关重要。此外,impact ionization在双极结晶体管(BJT)和金属氧化物半导体场效应晶体管(MOSFET)的操作中也是一个关键机制。在这些设备中,电流流动的控制依赖于电荷载流子的精确管理。impact ionization的速率可以影响击穿电压和这些组件的整体可靠性。工程师和科学家在设计电路时必须考虑这一影响,以确保它们在安全范围内运行并保持最佳性能。impact ionization的另一个重要方面是其温度依赖性。随着温度的升高,发生impact ionization的可能性也会增加,因为可用于电荷载流子的热能增加。这种关系对电子设备的热管理具有重要意义,因为过度加热可能导致不必要的电离,并最终导致设备故障。因此,理解impact ionization的动态特性对于提高半导体的热稳定性至关重要。总之,impact ionization是半导体物理领域的一个关键概念,描述了通过高能碰撞产生电子-空穴对的过程。它的应用广泛,影响着众多电子设备的设计和功能。通过研究impact ionization,研究人员可以提升现有技术的性能,同时为未来的电子创新铺平道路。随着我们继续推动半导体领域的可能性,深入理解impact ionization将对工程师和科学家至关重要。

相关单词

ionization

ionization详解:怎么读、什么意思、用法