great circle differential longitude

简明释义

大圆航行的经度差大圆航行分点经度

英英释义

Great circle differential longitude refers to the angular difference in longitude between two points on the surface of a sphere as measured along the path of a great circle. This measurement is crucial for navigation and geodesy, as it helps determine the shortest distance over the Earth's surface.

大圆差分经度是指在球面上沿大圆路径测量的两个点之间的经度角差。这一测量对于导航和大地测量至关重要,因为它有助于确定地球表面的最短距离。

例句

1.The pilot adjusted the flight path based on the great circle differential longitude 大圆差分经度 to save fuel during long-haul flights.

飞行员根据大圆差分经度 great circle differential longitude 调整了航线,以节省长途飞行的燃料。

2.When navigating across the ocean, sailors must consider the great circle differential longitude 大圆差分经度 to maintain an efficient course.

在跨越海洋时,水手必须考虑大圆差分经度 great circle differential longitude 以保持高效的航线。

3.Understanding great circle differential longitude 大圆差分经度 is crucial for accurate GPS navigation.

理解大圆差分经度 great circle differential longitude 对于准确的GPS导航至关重要。

4.In geography classes, students learn how great circle differential longitude 大圆差分经度 affects global positioning.

在地理课上,学生学习大圆差分经度 great circle differential longitude 如何影响全球定位。

5.Maritime maps often include calculations for great circle differential longitude 大圆差分经度 to assist navigators.

海图通常包括大圆差分经度 great circle differential longitude 的计算,以帮助导航员。

作文

Understanding the concept of great circle differential longitude is essential in the fields of geography and navigation. The term refers to the difference in longitude between two points on the Earth's surface when measured along a great circle route. A great circle is the shortest path between two points on a sphere, making it crucial for air and sea navigation. When pilots or sailors plan their routes, they often rely on the principles of great circles to save time and fuel. To grasp the significance of great circle differential longitude, one must first understand what a great circle is. Imagine slicing a globe with a plane that passes through its center; the intersection of this plane and the surface of the globe creates a great circle. The Equator is the most familiar example, but there are countless other great circles that can be drawn on the Earth. These circles play a vital role in navigation because they represent the shortest distance between two locations. When calculating distances and directions, navigators need to account for the curvature of the Earth. This is where great circle differential longitude comes into play. Instead of simply measuring the straight-line distance between two points, navigators consider the angles created by the great circle route. By understanding the differential longitude, they can determine the most efficient course to take, avoiding unnecessary detours that could lead to increased travel time and costs. For instance, if an airplane is flying from New York to London, the pilot will not fly in a straight line on a flat map. Instead, they will follow a great circle path that curves over the North Atlantic. By calculating the great circle differential longitude, the pilot can adjust their heading to ensure they remain on the shortest possible route. This method not only saves fuel but also reduces flight time, which is crucial for airlines operating on tight schedules. In addition to its practical applications in navigation, the concept of great circle differential longitude also has theoretical implications in geography and cartography. It challenges the traditional way of thinking about maps, which often depict the Earth as flat. Understanding how great circles function helps geographers create more accurate representations of our planet and its features.Moreover, the importance of great circle differential longitude extends beyond aviation and maritime navigation. It is also relevant in telecommunications, where signals are transmitted across vast distances. Engineers must consider the curvature of the Earth when designing communication networks to ensure optimal signal strength and coverage. By applying the principles of great circles, they can establish more effective connections between different regions. In conclusion, the concept of great circle differential longitude is a fundamental aspect of navigation and geography. It highlights the importance of understanding the Earth's curvature and the shortest paths between points. As technology continues to advance, the application of this knowledge will remain crucial for various fields, ensuring that we navigate our world efficiently and effectively. Whether in aviation, maritime travel, or telecommunications, recognizing the significance of great circle differential longitude will enhance our ability to traverse the globe and connect with one another.

理解大圆差异经度的概念在地理和导航领域至关重要。这个术语指的是在沿着大圆路线测量时,地球表面两个点之间的经度差异。大圆是球体上两点之间的最短路径,这使得它在航空和海洋导航中至关重要。当飞行员或水手规划航线时,他们通常依赖大圆的原理来节省时间和燃料。要掌握大圆差异经度的重要性,首先必须了解什么是大圆。想象一下用一个通过地球中心的平面切割一个地球仪;这个平面与地球表面的交集形成了一个大圆。赤道是最熟悉的例子,但地球上可以绘制无数其他的大圆。这些圆在导航中发挥着重要作用,因为它们代表了两个位置之间的最短距离。在计算距离和方向时,导航员需要考虑地球的曲率。这就是大圆差异经度发挥作用的地方。导航员不仅仅是简单地测量两个点之间的直线距离,而是考虑大圆路线所形成的角度。通过理解差异经度,他们可以确定最有效的航向,以避免不必要的绕行,从而导致旅行时间和成本的增加。例如,如果一架飞机从纽约飞往伦敦,飞行员不会在平面地图上直线飞行。相反,他们会沿着一个弯曲的北大西洋大圆路径飞行。通过计算大圆差异经度,飞行员可以调整他们的航向,以确保他们保持在可能的最短航线上。这种方法不仅节省燃料,还缩短了飞行时间,这对在紧张时间表下运营的航空公司至关重要。除了在导航中的实际应用外,大圆差异经度的概念在地理和制图上也具有理论意义。它挑战了传统的地图思维方式,后者通常将地球视为平面。理解大圆如何运作有助于地理学家创建更准确的地球及其特征的表示。此外,大圆差异经度的重要性不仅限于航空和海洋导航。在电信领域,信号跨越广阔的距离进行传输时也很相关。工程师在设计通信网络时必须考虑地球的曲率,以确保最佳的信号强度和覆盖范围。通过应用大圆的原理,他们可以在不同地区之间建立更有效的连接。总之,大圆差异经度的概念是导航和地理学的基本方面。它强调了理解地球曲率和点之间最短路径的重要性。随着技术的不断进步,这一知识的应用在各个领域仍将至关重要,确保我们高效、有效地导航世界。无论是在航空、海洋旅行还是电信领域,认识到大圆差异经度的重要性将增强我们横穿全球和彼此连接的能力。

相关单词

longitude

longitude详解:怎么读、什么意思、用法