electrostatic displacement

简明释义

静电移

英英释义

Electrostatic displacement refers to the shift of electric charges in a dielectric material when subjected to an electric field, resulting in polarization.

电静态位移是指在电场作用下,介质材料中电荷的移动,导致极化现象。

例句

1.The study focused on the effects of electrostatic displacement 静电位移 in dielectric materials.

研究集中在 静电位移 electrostatic displacement 在绝缘材料中的影响。

2.In high-voltage environments, electrostatic displacement 静电位移 can lead to dangerous arcs.

在高压环境中, 静电位移 electrostatic displacement 可能导致危险的电弧。

3.Engineers must consider electrostatic displacement 静电位移 when designing capacitors to ensure efficiency.

工程师在设计电容器时必须考虑 静电位移 electrostatic displacement 以确保效率。

4.Understanding electrostatic displacement 静电位移 is crucial for improving sensor technology.

理解 静电位移 electrostatic displacement 对于改善传感器技术至关重要。

5.The experiment demonstrated how electrostatic displacement 静电位移 can affect the behavior of charged particles.

实验展示了如何 静电位移 electrostatic displacement 可以影响带电粒子的行为。

作文

Electrostatics is a branch of physics that deals with the study of electric charges at rest. One of the key concepts in electrostatics is electrostatic displacement, which refers to the shift or movement of electric charges within a dielectric material when subjected to an electric field. This phenomenon is crucial in understanding how capacitors work and how materials respond to electric fields. In simple terms, electrostatic displacement can be thought of as the rearrangement of charges within an insulator when it is exposed to an external electric field.To better understand electrostatic displacement, consider a parallel plate capacitor. When voltage is applied across the plates, an electric field is established between them. This electric field causes the positive and negative charges within the dielectric material between the plates to shift slightly. The positive charges move toward the negative plate, while the negative charges move toward the positive plate. This movement results in a polarization of the dielectric material, which is characterized by the electrostatic displacement field, often denoted by the symbol D.The concept of electrostatic displacement is not only fundamental in theoretical physics but also has practical applications in various technologies. For example, in capacitors, the ability to store electric energy relies heavily on the dielectric material's response to the electric field, which is described by its electrostatic displacement. The greater the electrostatic displacement, the more charge can be stored for a given voltage, making the capacitor more efficient.Moreover, in the field of materials science, understanding electrostatic displacement is essential for developing new materials with desirable electrical properties. Researchers are constantly looking for materials that exhibit high electrostatic displacement to enhance the performance of electronic devices. For instance, materials with high dielectric constants can significantly improve the efficiency of capacitors and other electronic components.In addition, electrostatic displacement plays a vital role in the operation of sensors and actuators. Many devices rely on the precise control of electric fields and the resulting electrostatic displacement to function correctly. For example, piezoelectric materials generate an electric charge in response to mechanical stress, which is intimately related to the concept of electrostatic displacement. Understanding this relationship allows engineers to design more effective sensors and actuators for various applications.In conclusion, electrostatic displacement is a fundamental concept in electrostatics that describes the movement of electric charges within a dielectric material in response to an electric field. Its implications extend beyond theoretical physics into practical applications in electronics, materials science, and sensor technology. By grasping the principles of electrostatic displacement, we can better appreciate the underlying mechanisms that drive many modern technological advancements. As we continue to explore the intricacies of electric fields and their interactions with materials, the importance of electrostatic displacement will only grow, paving the way for innovations that could revolutionize the way we use and understand electricity.

静电学是物理学的一个分支,研究静止电荷的行为。在静电学中,一个关键概念是电静位移,它指的是在电场作用下,介电材料内部电荷的移动或位移。这种现象对于理解电容器的工作原理以及材料对电场的响应至关重要。简单来说,电静位移可以被视为绝缘体在暴露于外部电场时电荷的重新排列。为了更好地理解电静位移,我们可以考虑一个平行板电容器。当电压施加在电极之间时,电场在它们之间建立。这个电场导致介电材料内部的正负电荷稍微移动。正电荷向负电极移动,而负电荷向正电极移动。这种移动导致介电材料的极化,其特征是电静位移场,通常用符号D表示。电静位移的概念不仅在理论物理中是基础性的,而且在各种技术中也有实际应用。例如,在电容器中,储存电能的能力在很大程度上依赖于介电材料对电场的响应,这一过程由其电静位移来描述。电静位移越大,对于给定电压,可以储存的电荷就越多,这使得电容器更高效。此外,在材料科学领域,理解电静位移对于开发具有理想电气特性的材料至关重要。研究人员不断寻找表现出高电静位移的材料,以提高电子设备的性能。例如,具有高介电常数的材料可以显著提高电容器和其他电子元件的效率。另外,电静位移在传感器和执行器的操作中也起着至关重要的作用。许多设备依赖于电场的精确控制及其导致的电静位移来正常工作。例如,压电材料在机械应力作用下产生电荷,这与电静位移的概念密切相关。理解这种关系使工程师能够设计出更有效的传感器和执行器,用于各种应用。总之,电静位移是静电学中的一个基本概念,描述了介电材料在电场作用下电荷的移动。它的影响不仅限于理论物理,还扩展到电子学、材料科学和传感器技术的实际应用。通过掌握电静位移的原理,我们可以更好地理解驱动许多现代技术进步的基本机制。随着我们继续探索电场及其与材料相互作用的复杂性,电静位移的重要性只会增加,为可能改变我们使用和理解电力的方式的创新铺平道路。

相关单词

electrostatic

electrostatic详解:怎么读、什么意思、用法

displacement

displacement详解:怎么读、什么意思、用法