drag parameter

简明释义

阻力参数

英英释义

A drag parameter is a coefficient that quantifies the drag force acting on an object as it moves through a fluid, typically air or water, and is used in calculations of fluid dynamics.

拖曳参数是一个系数,用于量化物体在流体(通常是空气或水)中移动时所受的拖曳力,并用于流体动力学的计算。

例句

1.In fluid dynamics, the drag parameter helps in understanding how objects move through a fluid.

在流体动力学中,阻力参数有助于理解物体如何在流体中移动。

2.To optimize the design, we need to fine-tune the drag parameter based on wind tunnel test results.

为了优化设计,我们需要根据风洞测试结果微调阻力参数

3.In the simulation software, adjusting the drag parameter can significantly affect the accuracy of the results.

在模拟软件中,调整阻力参数可以显著影响结果的准确性。

4.The engineer explained that the drag parameter is crucial for predicting how the vehicle will perform at high speeds.

工程师解释说,阻力参数对于预测车辆在高速下的表现至关重要。

5.The team used a software tool to visualize the effects of changing the drag parameter on the aircraft's performance.

团队使用软件工具可视化更改阻力参数对飞机性能的影响。

作文

In the field of aerodynamics, understanding the factors that affect the performance of an aircraft is crucial. One such factor is the drag parameter, which plays a significant role in determining how efficiently an aircraft can move through the air. The drag parameter refers to the numerical value that quantifies the resistance an object encounters as it travels through a fluid, such as air or water. This resistance is primarily caused by friction and pressure differences around the object's surface. When designing an aircraft, engineers must carefully consider the drag parameter to optimize its shape and materials. A lower drag parameter indicates that the aircraft will experience less resistance, allowing it to achieve higher speeds and improved fuel efficiency. Conversely, a high drag parameter can lead to increased fuel consumption and reduced performance. Several factors influence the drag parameter, including the shape of the aircraft, its surface texture, and the angle at which it interacts with the airflow. For instance, a streamlined design minimizes turbulence and reduces drag, while a rough surface can increase friction and elevate the drag parameter. Engineers often use computational fluid dynamics (CFD) simulations to analyze and predict how changes in design will affect the drag parameter. Moreover, the drag parameter is not static; it can change based on various conditions such as altitude, speed, and atmospheric pressure. At higher speeds, for example, the drag force increases significantly, which is why supersonic aircraft face unique challenges related to their drag parameter. Understanding these dynamics is essential for developing technologies that enhance aircraft performance and safety. In addition to aircraft, the drag parameter also applies to other vehicles, such as cars and boats. In automotive engineering, reducing the drag parameter is vital for improving fuel efficiency and overall performance. Car designers employ wind tunnel testing to measure and optimize the drag parameter, ensuring that vehicles can cut through the air with minimal resistance. Similarly, in marine engineering, the drag parameter helps in designing hull shapes that minimize water resistance, enhancing speed and fuel economy. Ultimately, the drag parameter is a fundamental concept in fluid dynamics that impacts various forms of transportation. By focusing on minimizing this parameter, engineers can create more efficient, faster, and environmentally friendly vehicles. The ongoing research and advancements in technology continue to shed light on the intricacies of the drag parameter, paving the way for innovations that will shape the future of travel and transport. Understanding the drag parameter is not just about improving performance; it is also about making strides towards sustainability in an ever-evolving world.

在空气动力学领域,理解影响飞机性能的因素至关重要。其中一个因素是阻力参数,它在确定飞机如何有效地穿过空气方面发挥着重要作用。阻力参数是指量化物体在流体(如空气或水)中移动时遇到的阻力的数值。这种阻力主要是由物体表面周围的摩擦和压力差引起的。在设计飞机时,工程师必须仔细考虑阻力参数,以优化其形状和材料。较低的阻力参数表示飞机将经历更少的阻力,从而能够达到更高的速度和改善的燃油效率。相反,高阻力参数可能导致燃料消耗增加和性能降低。多个因素会影响阻力参数,包括飞机的形状、表面纹理以及与气流的交互角度。例如,流线型设计可以最小化湍流并减少阻力,而粗糙的表面则会增加摩擦并提高阻力参数。工程师通常使用计算流体动力学(CFD)模拟来分析和预测设计变化将如何影响阻力参数。此外,阻力参数并不是静态的;它可以根据不同的条件变化,比如高度、速度和大气压力。例如,在更高的速度下,阻力会显著增加,这就是为什么超音速飞机面临与其阻力参数相关的独特挑战。了解这些动态对于开发增强飞机性能和安全性的技术至关重要。除了飞机,阻力参数还适用于其他车辆,如汽车和船只。在汽车工程中,降低阻力参数对改善燃油效率和整体性能至关重要。汽车设计师使用风洞测试来测量和优化阻力参数,确保车辆能够以最小的阻力切割空气。同样,在海洋工程中,阻力参数有助于设计最小化水阻力的船体形状,从而提高速度和燃油经济性。最终,阻力参数是流体动力学中的一个基本概念,影响各种交通运输方式。通过关注最小化这一参数,工程师可以创造出更高效、更快和更环保的车辆。持续的研究和技术进步不断揭示阻力参数的复杂性,为塑造未来旅行和运输的创新铺平了道路。理解阻力参数不仅仅是改善性能的问题;这也是在不断发展的世界中朝着可持续发展迈进的一步。