dimensionless parameter

简明释义

无量纲参数

英英释义

A dimensionless parameter is a quantity that has no units and is used to describe the relative magnitude of different physical phenomena or to compare systems without the influence of scale.

无量纲参数是一个没有单位的量,用于描述不同物理现象的相对大小或在不受尺度影响的情况下比较系统。

例句

1.In fluid dynamics, the Reynolds number is a key dimensionless parameter 无量纲参数 that helps predict flow patterns in different fluid flow situations.

在流体动力学中,雷诺数是一个关键的无量纲参数 dimensionless parameter,有助于预测不同流体流动情况下的流动模式。

2.When analyzing heat transfer, the Nusselt number serves as a dimensionless parameter 无量纲参数 that indicates the efficiency of convective heat transfer.

在分析热传递时,努塞尔数作为一个无量纲参数 dimensionless parameter,指示对流热传递的效率。

3.The Froude number is a dimensionless parameter 无量纲参数 that compares inertial and gravitational forces in fluid flow.

弗劳德数是一个无量纲参数 dimensionless parameter,比较流体流动中的惯性力和重力。

4.In chemical engineering, the Damköhler number is a dimensionless parameter 无量纲参数 that relates reaction rates to mass transport rates.

在化学工程中,达姆科勒数是一个无量纲参数 dimensionless parameter,它将反应速率与质量传输速率联系起来。

5.The Strouhal number is another important dimensionless parameter 无量纲参数 used in the study of oscillating flows.

斯特劳哈尔数是研究振荡流动时使用的另一个重要的无量纲参数 dimensionless parameter

作文

In the realm of science and engineering, understanding various concepts is crucial for analyzing different phenomena. One such concept that plays a significant role in fluid mechanics, thermodynamics, and other fields is the dimensionless parameter. A dimensionless parameter is a quantity without any physical units, allowing scientists and engineers to compare different systems and processes without the complications introduced by units of measurement. This characteristic makes dimensionless parameters particularly useful in the study of similarity and scaling laws.Consider the example of fluid flow around an object. Engineers often use the Reynolds number, which is a specific type of dimensionless parameter, to predict flow patterns in different situations. The Reynolds number is defined as the ratio of inertial forces to viscous forces and helps determine whether the flow will be laminar or turbulent. By using this dimensionless parameter, engineers can analyze the behavior of fluids without being constrained by the specific units of measurement used in each case. This universality allows for better predictions and comparisons across various scenarios.Another important dimensionless parameter is the Mach number, which is the ratio of the speed of an object to the speed of sound in the surrounding medium. The Mach number is crucial in aerodynamics, as it helps engineers understand the behavior of aircraft at different speeds. By examining the Mach number, one can categorize flow regimes, such as subsonic, transonic, supersonic, and hypersonic flows. Each of these regimes exhibits distinct characteristics, and understanding them is vital for designing efficient and safe aircraft.Additionally, dimensionless parameters can be found in heat transfer analysis, where the Nusselt number serves as a prominent example. The Nusselt number represents the ratio of convective to conductive heat transfer and is essential in determining the efficiency of heat exchangers. By utilizing this dimensionless parameter, engineers can optimize designs and improve energy efficiency in various applications.The significance of dimensionless parameters extends beyond practical applications; they also play a critical role in theoretical research. In dimensional analysis, researchers can derive relationships between different physical quantities by eliminating units through the use of dimensionless parameters. This process simplifies complex equations and makes it easier to identify key factors influencing a particular phenomenon.In conclusion, the concept of the dimensionless parameter is fundamental in both theoretical and applied sciences. By providing a means to compare different systems without the constraints of physical units, dimensionless parameters facilitate a deeper understanding of various phenomena. Mastery of this concept empowers scientists and engineers to make informed decisions based on comparative analyses, ultimately leading to advancements in technology and improved efficiency in numerous fields. As we continue to explore the complexities of the natural world, the importance of dimensionless parameters will undoubtedly remain a cornerstone of scientific inquiry and innovation.

在科学和工程的领域中,理解各种概念对于分析不同现象至关重要。一个在流体力学、热力学和其他领域发挥重要作用的概念是无量纲参数无量纲参数是一个没有任何物理单位的量,它使科学家和工程师能够比较不同的系统和过程,而不受测量单位带来的复杂性。这一特性使得无量纲参数在相似性和缩放法则的研究中尤为有用。考虑流体绕物体流动的例子。工程师通常使用雷诺数,这是一种特定类型的无量纲参数,来预测不同情况下的流动模式。雷诺数被定义为惯性力与粘性力的比率,有助于确定流动是层流还是湍流。通过使用这个无量纲参数,工程师可以分析流体的行为,而不受每种情况中使用的具体测量单位的限制。这种普遍性使得对各种场景的预测和比较更为有效。另一个重要的无量纲参数是马赫数,它是物体速度与周围介质中声速的比率。马赫数在空气动力学中至关重要,因为它帮助工程师理解飞机在不同速度下的行为。通过检查马赫数,可以对流动状态进行分类,例如亚音速、跨音速、超音速和高超音速流动。这些流动状态各自表现出不同的特性,理解这些特性对于设计高效且安全的飞机至关重要。此外,在热传递分析中也可以找到无量纲参数,努塞尔数就是一个突出的例子。努塞尔数表示对流与导热的比率,在确定热交换器的效率方面至关重要。通过利用这个无量纲参数,工程师可以优化设计,提高各种应用中的能效。无量纲参数的重要性不仅体现在实际应用中;它们在理论研究中也起着关键作用。在维度分析中,研究人员可以通过使用无量纲参数消除单位,从而推导出不同物理量之间的关系。这个过程简化了复杂方程,使识别影响特定现象的关键因素变得更加容易。总之,无量纲参数的概念在理论和应用科学中都是基础性的。通过提供一种在没有物理单位限制的情况下比较不同系统的方法,无量纲参数促进了对各种现象的更深入理解。掌握这一概念使科学家和工程师能够基于比较分析做出明智的决策,最终推动技术进步和提高多个领域的效率。随着我们继续探索自然世界的复杂性,无量纲参数的重要性无疑将继续成为科学研究和创新的基石。

相关单词

dimensionless

dimensionless详解:怎么读、什么意思、用法