densimetric Froude number
简明释义
密度傅汝德数
英英释义
例句
1.A high densimetric Froude number 密度弗劳德数 indicates that inertial forces dominate over gravitational forces in a flow.
高密度弗劳德数表明惯性力在流动中占主导地位,而重力则相对较小。
2.The densimetric Froude number 密度弗劳德数 is critical for assessing the stability of riverbanks during flood events.
在洪水事件中,密度弗劳德数对评估河岸的稳定性至关重要。
3.Engineers often use the densimetric Froude number 密度弗劳德数 to design safe spillways for dams.
工程师常常使用密度弗劳德数来设计大坝的安全溢洪道。
4.The calculation of the densimetric Froude number 密度弗劳德数 is essential for understanding flow behavior in open channel hydraulics.
计算密度弗劳德数对于理解开放渠道水力学中的流动行为至关重要。
5.In sediment transport studies, the densimetric Froude number 密度弗劳德数 helps predict when sediment will be mobilized.
在沉积物输送研究中,密度弗劳德数有助于预测沉积物何时会被动员。
作文
The study of fluid dynamics is crucial in various fields, including engineering, meteorology, and environmental science. One important concept within this realm is the densimetric Froude number, which serves as a dimensionless parameter that helps to characterize flow regimes in fluids with varying densities. The densimetric Froude number is defined as the ratio of the inertial forces to the gravitational forces acting on a fluid element, taking into account the density differences between the fluid and the surrounding medium. This number is particularly significant in scenarios where stratification occurs, such as in rivers or oceans where freshwater and saltwater meet.To understand the significance of the densimetric Froude number, we must first consider the traditional Froude number, which is defined as the ratio of the velocity of a fluid to the square root of the gravitational acceleration multiplied by a characteristic length scale. While the traditional Froude number is useful for analyzing flows in uniform fluids, it falls short when dealing with stratified flows where density variations play a critical role. This is where the densimetric Froude number comes into play, providing a more comprehensive understanding of the flow behavior under these conditions.In practical applications, the densimetric Froude number can help predict the stability of stratified flows and the potential for mixing between different fluid layers. For instance, in a river where lighter freshwater flows over denser saltwater, understanding the densimetric Froude number allows engineers and environmental scientists to assess the likelihood of turbulence and mixing, which can have significant ecological implications. Moreover, this parameter can be essential in designing structures such as dams or spillways, where the interaction between different water layers must be carefully managed to prevent erosion or failure.Another area where the densimetric Froude number is relevant is in atmospheric sciences, particularly in the study of stratified flows in the atmosphere. For example, when warm air rises over cooler air, the densimetric Froude number can help determine whether the resulting flow will remain stable or lead to convection, which can influence weather patterns. Understanding these dynamics is vital for accurate weather forecasting and climate modeling.In conclusion, the densimetric Froude number is an essential tool in fluid dynamics that enhances our understanding of complex flow regimes involving density variations. Its applications span across various disciplines, from environmental science to engineering and meteorology. By incorporating the densimetric Froude number into analyses, researchers and practitioners can make informed decisions that consider the intricate interactions between different fluid layers, ultimately leading to better management of natural resources and improved safety in engineering designs.
流体动力学的研究在工程、气象和环境科学等多个领域中至关重要。其中一个重要概念是密度Froude数,它作为一个无量纲参数,有助于表征具有不同密度的流体的流动状态。密度Froude数被定义为作用于流体元素的惯性力与重力之间的比率,同时考虑到流体与周围介质之间的密度差异。这个数值在发生分层的情况下特别重要,例如在河流或海洋中,淡水与盐水交汇的地方。为了理解密度Froude数的重要性,我们必须首先考虑传统的Froude数,它被定义为流体速度与重力加速度乘以特征长度尺度的平方根之间的比率。虽然传统的Froude数在分析均匀流体的流动时很有用,但在处理密度变化显著的分层流动时,它的适用性就显得不足。这就是密度Froude数发挥作用的地方,它提供了对这些条件下流动行为的更全面理解。在实际应用中,密度Froude数可以帮助预测分层流动的稳定性及不同流体层之间混合的潜力。例如,在一条河流中,较轻的淡水流过较密的盐水,理解密度Froude数能够让工程师和环境科学家评估湍流和混合的可能性,这对生态环境有重要影响。此外,这个参数在设计大坝或溢洪道等结构时也至关重要,因为不同水层之间的相互作用必须得到仔细管理,以防止侵蚀或结构失效。密度Froude数相关的另一个领域是大气科学,特别是在研究大气中的分层流动时。例如,当温暖的空气在较冷的空气上升时,密度Froude数可以帮助判断随之而来的流动是保持稳定还是导致对流,这会影响天气模式。理解这些动态对于准确的天气预报和气候模型至关重要。总之,密度Froude数是流体动力学中的一个重要工具,增强了我们对涉及密度变化的复杂流动状态的理解。它的应用跨越多个学科,从环境科学到工程和气象学。通过将密度Froude数纳入分析,研究人员和从业者可以做出考虑不同流体层之间复杂相互作用的明智决策,最终导致更好的自然资源管理和工程设计的安全性提高。