demagnetizing field

简明释义

消磁场

英英释义

A demagnetizing field is a magnetic field that opposes the magnetization of a material, effectively reducing or eliminating its magnetic properties.

去磁场是一个与材料的磁化方向相反的磁场,能够有效减少或消除材料的磁性。

例句

1.The demagnetizing field 去磁场 can affect the performance of magnetic sensors in electronic devices.

去磁场可能会影响电子设备中磁传感器的性能。

2.When exposed to a strong demagnetizing field 去磁场, permanent magnets lose their magnetization over time.

当暴露在强去磁场中时,永久磁铁会随着时间的推移失去其磁性。

3.Engineers must consider the demagnetizing field 去磁场 when designing magnetic storage devices.

工程师在设计磁存储设备时必须考虑去磁场。

4.The demagnetizing field 去磁场 can be generated by alternating current passing through coils.

交变电流通过线圈可以产生去磁场。

5.In a laboratory setting, researchers often study the effects of a demagnetizing field 去磁场 on ferromagnetic materials.

在实验室环境中,研究人员经常研究去磁场对铁磁材料的影响。

作文

In the study of magnetism, one important concept that often arises is the demagnetizing field. This term refers to the magnetic field that opposes the magnetization of a material, effectively reducing or even eliminating its magnetic properties. Understanding the demagnetizing field is crucial in various applications, including data storage devices, electric motors, and transformers, where magnetic materials play a significant role. To grasp the significance of the demagnetizing field, we first need to understand how magnetic materials behave. When a magnetic material is magnetized, its magnetic domains align in a particular direction, resulting in a net magnetic moment. However, when an external magnetic field is applied, the alignment of these domains can be disrupted. This is where the demagnetizing field comes into play. It acts against the applied magnetic field, causing the magnetic domains to realign in such a way that the overall magnetization of the material decreases.The strength of the demagnetizing field depends on several factors, including the shape and size of the magnetic material. For instance, a long, thin rod will exhibit a different demagnetizing field than a spherical magnet. This variation is essential for engineers and scientists to consider when designing magnetic systems. By understanding the demagnetizing field, they can predict how a material will respond to external magnetic influences and optimize its performance.One practical example of the demagnetizing field can be observed in hard disk drives. These devices rely on magnetic materials to store data. If the demagnetizing field is too strong, it can lead to data loss or corruption, as the magnetic domains may become misaligned. Therefore, engineers must carefully design the magnetic layers in these devices to minimize the effects of the demagnetizing field while maximizing data integrity.Moreover, the demagnetizing field is also significant in the context of electric motors. In these machines, the interaction between the magnetic fields generated by the stator and rotor is essential for efficient operation. If the demagnetizing field is not properly managed, it can lead to reduced efficiency, overheating, and ultimately failure of the motor. Thus, understanding the demagnetizing field is critical for ensuring reliable performance in electric motors.In conclusion, the demagnetizing field is a fundamental concept in magnetism that has far-reaching implications in various technological applications. By comprehensively understanding this phenomenon, engineers and scientists can enhance the performance and reliability of magnetic devices. As technology continues to evolve, the importance of mastering concepts like the demagnetizing field will only grow, paving the way for innovations in data storage, electric motors, and beyond.

在磁学研究中,一个重要的概念是去磁场。这个术语指的是一种对材料的磁化产生相反作用的磁场,实际上减少甚至消除其磁性。理解去磁场在各种应用中至关重要,包括数据存储设备、电动机和变压器,其中磁性材料发挥着重要作用。要掌握去磁场的重要性,我们首先需要了解磁性材料的行为。当一种磁性材料被磁化时,其磁畴会朝着特定方向排列,从而产生净磁矩。然而,当施加外部磁场时,这些畴的排列可能会受到干扰。这就是去磁场发挥作用的地方。它对抗施加的磁场,导致磁畴重新排列,从而使材料的总体磁化降低。去磁场的强度取决于多个因素,包括磁性材料的形状和大小。例如,长细的棒状物体与球形磁铁表现出的去磁场将有所不同。这种变化对于工程师和科学家在设计磁性系统时必须考虑。通过理解去磁场,他们可以预测材料如何响应外部磁场的影响,并优化其性能。一个实际的例子是硬盘驱动器。这些设备依赖于磁性材料来存储数据。如果去磁场过强,可能会导致数据丢失或损坏,因为磁畴可能会错位。因此,工程师必须仔细设计这些设备中的磁层,以最小化去磁场的影响,同时最大化数据完整性。此外,在电动机的上下文中,去磁场也具有重要意义。在这些机器中,定子和转子产生的磁场之间的相互作用对高效运行至关重要。如果去磁场没有得到妥善管理,可能会导致效率降低、过热,最终导致电动机故障。因此,理解去磁场对确保电动机的可靠性能至关重要。总之,去磁场是磁学中的一个基本概念,对各种技术应用具有深远的影响。通过全面理解这一现象,工程师和科学家可以提高磁性设备的性能和可靠性。随着技术的不断发展,掌握像去磁场这样的概念的重要性只会增加,为数据存储、电动机等领域的创新铺平道路。