electrodynamic balance

简明释义

电动平衡

英英释义

A method of balancing small particles or droplets using electric fields to counteract gravitational forces, allowing for precise measurements and manipulation in scientific experiments.

一种利用电场抵消重力作用来平衡小颗粒或液滴的方法,从而在科学实验中实现精确测量和操作。

例句

1.The innovative design of the electrodynamic balance makes it suitable for both educational and research purposes.

这种电动平衡的创新设计使其适用于教育和研究目的。

2.The researchers used an electrodynamic balance to measure the mass of tiny particles with high precision.

研究人员使用电动平衡高精度测量微小颗粒的质量。

3.In the lab, the electrodynamic balance allowed scientists to manipulate particles in a vacuum environment.

在实验室中,电动平衡允许科学家在真空环境中操控颗粒。

4.The electrodynamic balance is crucial for experiments that require precise measurement of forces.

对于需要精确测量力的实验来说,电动平衡是至关重要的。

5.Using an electrodynamic balance, we can observe the effects of electric fields on small samples.

通过使用电动平衡,我们可以观察电场对小样本的影响。

作文

The concept of electrodynamic balance is a fascinating area of study within the field of physics, particularly in the realm of particle manipulation and measurement. This technique utilizes electric fields to achieve a state where charged particles can be suspended in a vacuum without physical contact with any surface. The principle behind electrodynamic balance involves generating forces that counteract the gravitational pull on these particles, allowing them to remain in a stable position. This method has significant implications for various scientific experiments, particularly in the study of fundamental physical properties of matter.In practical applications, electrodynamic balance is used to analyze the characteristics of small particles, such as their mass and charge. For instance, researchers can employ this technique to measure the mass of individual particles with remarkable precision. By balancing the gravitational force acting on the particle with an electric force generated by an oscillating electric field, scientists can determine the properties of the particle without any interference from the surrounding environment. This is particularly useful in fields like chemistry and materials science, where understanding the behavior of tiny particles is crucial.Moreover, the ability to manipulate particles using electrodynamic balance opens up new avenues for research in areas like nanotechnology and drug delivery systems. In nanotechnology, for example, scientists can use this technique to study nanoparticles that have unique properties compared to their bulk counterparts. By suspending these nanoparticles in an electrodynamic balance, researchers can investigate their behavior under different conditions, leading to advancements in material design and application.Additionally, electrodynamic balance plays a vital role in the development of innovative drug delivery methods. By controlling the movement of drug-laden particles, scientists can enhance the efficiency of delivering medications directly to targeted sites within the body. This precision is crucial for minimizing side effects and maximizing the therapeutic effects of drugs, particularly in treatments for diseases like cancer.The importance of electrodynamic balance extends beyond just measurement and manipulation; it also serves as a tool for fundamental research. By studying particles in a vacuum, scientists can gain insights into the fundamental forces of nature, such as electromagnetic interactions and gravitational effects at a microscopic level. This research not only deepens our understanding of the universe but also contributes to the development of new technologies that rely on these fundamental principles.In conclusion, the study of electrodynamic balance represents a significant advancement in our ability to manipulate and understand the behavior of small particles. Its applications in various fields, from nanotechnology to drug delivery, highlight the versatility and importance of this technique in modern science. As research continues to evolve, the potential for electrodynamic balance to contribute to groundbreaking discoveries remains vast, paving the way for innovations that could transform multiple industries and enhance our understanding of the natural world.

“电动力平衡”这一概念是物理学领域,特别是在粒子操纵和测量方面的一个迷人研究领域。这种技术利用电场实现带电粒子在真空中悬浮而不与任何表面接触的状态。“电动力平衡”的原理涉及产生与这些粒子所受重力相对抗的力,从而使它们保持在稳定位置。这种方法对各种科学实验具有重要意义,特别是在研究物质的基本物理特性方面。在实际应用中,“电动力平衡”用于分析小颗粒的特征,例如它们的质量和电荷。例如,研究人员可以利用这一技术以极高的精度测量单个粒子的质量。通过平衡作用在粒子上的重力与由振荡电场产生的电力,科学家可以在不干扰周围环境的情况下确定粒子的特性。这在化学和材料科学等领域尤为重要,因为理解微小颗粒的行为至关重要。此外,利用“电动力平衡”操纵粒子的能力为纳米技术和药物递送系统等领域的研究开辟了新途径。在纳米技术中,例如,科学家可以使用这一技术研究与其块体对应物相比具有独特特性的纳米颗粒。通过将这些纳米颗粒悬浮在“电动力平衡”中,研究人员可以研究它们在不同条件下的行为,从而推动材料设计和应用的进步。此外,“电动力平衡”在创新药物递送方法的发展中也发挥着至关重要的作用。通过控制载药颗粒的运动,科学家能够提高将药物直接递送到体内目标部位的效率。这种精确性对于最小化副作用和最大化药物的治疗效果至关重要,尤其是在癌症等疾病的治疗中。“电动力平衡”的重要性不仅限于测量和操纵;它还是基础研究的工具。通过在真空中研究粒子,科学家可以深入了解自然的基本力量,例如电磁相互作用和微观水平上的引力效应。这项研究不仅加深了我们对宇宙的理解,还促进了依赖这些基本原理的新技术的发展。总之,“电动力平衡”的研究代表了我们操纵和理解小颗粒行为能力的重要进展。它在纳米技术、药物递送等各个领域的应用突显了这一技术在现代科学中的多样性和重要性。随着研究的不断发展,“电动力平衡”在推动突破性发现方面的潜力仍然巨大,为可能改变多个行业并增强我们对自然世界的理解铺平了道路。

相关单词

electrodynamic

electrodynamic详解:怎么读、什么意思、用法