crystalline solid

简明释义

晶体

英英释义

A crystalline solid is a material whose constituents, such as atoms, molecules, or ions, are arranged in an orderly repeating pattern extending in all three spatial dimensions.

晶体固体是指其成分(如原子、分子或离子)在三维空间中以有序的重复模式排列的材料。

例句

1.In chemistry, we often study the formation of crystalline solids from solutions.

在化学中,我们经常研究从溶液中形成晶体固体的过程。

2.The properties of a crystalline solid can vary significantly based on its atomic arrangement.

由于原子排列的不同,晶体固体的性质可能会有显著差异。

3.Sodium chloride, or table salt, is a typical crystalline solid.

氯化钠,或食盐,是一种典型的晶体固体

4.When water freezes, it forms a crystalline solid structure known as ice.

当水结冰时,它形成一种被称为冰的晶体固体结构。

5.The mineral quartz is a common example of a crystalline solid.

矿物石英是一个常见的晶体固体例子。

作文

Crystalline solids are a fascinating class of materials that exhibit unique properties due to their highly ordered structure. These solids are characterized by a repeating pattern of atoms, ions, or molecules that extend in three dimensions. This regular arrangement is what gives crystalline solid (晶体固体) its distinct physical properties such as sharp melting points, high symmetry, and anisotropic behavior. In contrast to amorphous solids, which lack long-range order, crystalline solids (晶体固体) provide a predictable and uniform structure that can be studied and utilized in various scientific fields.One of the most significant aspects of crystalline solids (晶体固体) is their ability to form crystals, which can be seen in everyday materials like table salt and sugar. These substances crystallize from solutions, where the solute particles arrange themselves into a well-defined lattice as the solvent evaporates. The resulting crystals can vary in shape and size, depending on the conditions under which they formed. For instance, sodium chloride typically forms cubic crystals, while quartz can create hexagonal prisms. This diversity in crystal shapes is not only visually appealing but also crucial for identifying different crystalline solids (晶体固体) in mineralogy and chemistry.The study of crystalline solids (晶体固体) extends beyond mere aesthetics; it has practical applications in numerous industries. In electronics, for example, silicon crystals are fundamental components in semiconductor devices. The electrical properties of crystalline solids (晶体固体) allow them to conduct electricity under certain conditions, making them essential for modern technology. Similarly, in pharmaceuticals, the crystallization process is vital for drug formulation, as the solubility and bioavailability of a drug can be significantly influenced by its crystalline form.Moreover, the mechanical strength of crystalline solids (晶体固体) is another area of interest. Materials like diamonds, which are a type of crystalline solid, possess remarkable hardness due to their strong covalent bonding and tightly packed atomic structure. This property makes diamonds ideal for cutting tools and abrasives. On the other hand, metals such as iron and copper also form crystalline solids (晶体固体), but their mechanical properties can vary widely based on their crystal structure and the presence of impurities.The exploration of crystalline solids (晶体固体) also leads to advancements in materials science. Researchers are continually investigating new ways to manipulate the crystallization process to develop materials with tailored properties. For instance, by controlling the temperature and concentration during crystallization, scientists can create materials with specific strengths, thermal conductivities, or optical properties. This ability to engineer crystalline solids (晶体固体) opens up new possibilities in fields such as nanotechnology and renewable energy.In conclusion, crystalline solids (晶体固体) are integral to both nature and technology, offering a wealth of knowledge and applications. Their ordered structures not only define their physical properties but also play a crucial role in various industrial processes. As we continue to explore and understand these fascinating materials, the potential for innovation and discovery remains vast. Whether in the form of stunning gemstones or essential electronic components, crystalline solids (晶体固体) will undoubtedly continue to captivate scientists and engineers alike.

晶体固体是一类引人入胜的材料,由于其高度有序的结构,展现出独特的特性。这些固体的特点是原子、离子或分子在三维空间中呈现出重复的模式。这种规则的排列使得晶体固体crystalline solid)具备了明显的物理特性,如尖锐的熔点、高对称性和各向异性行为。与缺乏长程有序的非晶固体相比,晶体固体crystalline solid)提供了一种可预测和均匀的结构,可以在多个科学领域进行研究和利用。晶体固体crystalline solid)的一个重要方面是它们能够形成晶体,这在日常材料中可以看到,例如食盐和糖。这些物质从溶液中结晶,其中溶质粒子在溶剂蒸发时排列成一个明确的晶格。最终形成的晶体可以根据它们形成的条件而变化形状和大小。例如,氯化钠通常形成立方晶体,而石英则可以形成六角柱。这种晶体形状的多样性不仅在视觉上吸引人,而且在矿物学和化学中识别不同的晶体固体crystalline solid)至关重要。对晶体固体crystalline solid)的研究超越了单纯的美学,它在众多行业中具有实际应用。例如,在电子学中,硅晶体是半导体设备的基本组成部分。晶体固体crystalline solid)的电气特性使其在特定条件下能够导电,这使其成为现代技术的核心。同样,在制药行业,结晶过程对于药物配方至关重要,因为药物的溶解度和生物利用度可能会受到其晶体形态的显著影响。此外,晶体固体crystalline solid)的机械强度也是一个值得关注的领域。像钻石这样的材料,作为一种晶体固体crystalline solid),由于其强共价键和紧密堆积的原子结构,具有显著的硬度。这一特性使得钻石成为切割工具和磨料的理想选择。另一方面,铁和铜等金属也形成晶体固体crystalline solid),但它们的机械特性可能因晶体结构和杂质的存在而有很大差异。对晶体固体crystalline solid)的探索也推动了材料科学的进步。研究人员不断研究新的方法来操控结晶过程,以开发具有特定特性的材料。例如,通过控制结晶过程中的温度和浓度,科学家可以创造出具有特定强度、热导率或光学特性的材料。这种工程化的能力使得晶体固体crystalline solid)在纳米技术和可再生能源等领域开辟了新的可能性。总之,晶体固体crystalline solid)在自然界和技术中都是不可或缺的,提供了丰富的知识和应用。它们的有序结构不仅定义了它们的物理特性,还在各种工业过程中发挥着关键作用。随着我们继续探索和理解这些迷人的材料,创新和发现的潜力仍然广阔。无论是以令人惊叹的宝石形式还是作为必不可少的电子组件,晶体固体crystalline solid)无疑将继续吸引科学家和工程师的目光。

相关单词

crystalline

crystalline详解:怎么读、什么意思、用法