crystalline material
简明释义
晶体材料
英英释义
A crystalline material is a solid substance in which the atoms are arranged in a highly ordered, repeating pattern, forming a crystal lattice. | 晶体材料是一种固体物质,其原子以高度有序、重复的模式排列,形成晶体格子。 |
例句
1.Research on crystalline materials is crucial for developing new technologies.
对晶体材料的研究对于开发新技术至关重要。
2.Many gemstones are classified as crystalline materials due to their orderly atomic arrangement.
许多宝石被归类为晶体材料,因为它们的原子排列有序。
3.The properties of crystalline materials can vary significantly depending on their structure.
不同结构的晶体材料其性质可能有显著差异。
4.The diamond is a type of crystalline material that is highly valued for its beauty and hardness.
钻石是一种高度珍贵的晶体材料,因其美丽和硬度而受到重视。
5.Silicon, a common crystalline material, is widely used in the electronics industry.
硅是一种常见的晶体材料,广泛应用于电子工业。
作文
Crystalline materials are fundamental to many aspects of our daily lives, from the technology we use to the structures we inhabit. These materials possess a highly ordered structure, where atoms are arranged in a repeating pattern extending in all three spatial dimensions. This unique arrangement gives rise to various physical properties that distinguish them from non-crystalline or amorphous materials. For instance, the clarity and brilliance of gemstones such as diamonds and quartz can be attributed to their crystalline material (晶体材料) structure, which allows light to pass through in specific ways, creating dazzling effects.In addition to their aesthetic appeal, crystalline materials (晶体材料) are also crucial in many technological applications. For example, silicon, a common crystalline material (晶体材料), is the backbone of modern electronics. Its semiconductor properties make it an ideal choice for manufacturing microchips and solar cells. The ability to manipulate the electronic properties of silicon by introducing impurities—a process known as doping—has revolutionized the field of electronics, enabling the development of faster and more efficient devices.Moreover, the study of crystalline materials (晶体材料) extends into the realm of materials science, where researchers explore how the arrangement of atoms affects a material's strength, conductivity, and reactivity. For instance, metals like steel and aluminum exhibit different mechanical properties based on their crystalline material (晶体材料) structures. By understanding these properties, scientists can design new alloys with enhanced performance for specific applications, such as aerospace engineering or construction.The importance of crystalline materials (晶体材料) is not limited to traditional industries. In the field of pharmaceuticals, the crystallization process plays a vital role in drug formulation. The solubility and bioavailability of a drug can be significantly influenced by its crystalline material (晶体材料) form. Researchers are constantly exploring new methods to control crystallization, ensuring that medications are effective and safe for patients.Furthermore, the environmental impact of crystalline materials (晶体材料) cannot be overlooked. The extraction and processing of minerals used in crystalline materials (晶体材料) can lead to significant ecological disturbances. Therefore, sustainable practices are essential in the mining and manufacturing processes to minimize harm to our planet. Innovations in recycling technologies also aim to recover valuable crystalline materials (晶体材料) from electronic waste, contributing to a circular economy.In conclusion, crystalline materials (晶体材料) are integral to both nature and technology. Their unique properties and structures offer endless possibilities for innovation and advancement across various fields. As research continues to unfold, our understanding of crystalline materials (晶体材料) will undoubtedly lead to breakthroughs that enhance our quality of life while addressing the challenges we face in sustainability and environmental protection.
晶体材料是我们日常生活中许多方面的基础,从我们使用的技术到我们居住的建筑。这些材料具有高度有序的结构,原子以重复的模式排列,延伸到所有三个空间维度。这种独特的排列产生了各种物理特性,使它们与非晶体或无定形材料区分开来。例如,像钻石和石英这样的宝石的清晰度和光辉可以归因于其晶体材料结构,这使光线以特定的方式通过,从而产生令人眼花缭乱的效果。除了美学吸引力之外,晶体材料在许多技术应用中也至关重要。例如,硅是一种常见的晶体材料,是现代电子产品的支柱。它的半导体特性使其成为制造微芯片和太阳能电池的理想选择。通过引入杂质来操纵硅的电子特性——这一过程称为掺杂——已经彻底改变了电子学领域,使得开发更快、更高效的设备成为可能。此外,晶体材料的研究扩展到材料科学领域,研究人员探讨原子的排列如何影响材料的强度、导电性和反应性。例如,钢和铝等金属的机械性能根据其晶体材料结构而有所不同。通过理解这些特性,科学家可以设计出具有增强性能的新合金,用于航空航天工程或建筑等特定应用。晶体材料的重要性并不仅限于传统行业。在制药领域,结晶过程在药物配方中发挥着至关重要的作用。药物的溶解度和生物利用度会受到其晶体材料形式的显著影响。研究人员不断探索控制结晶的新方法,以确保药物对患者有效且安全。此外,晶体材料的环境影响也不容忽视。用于晶体材料的矿物的提取和加工可能导致显著的生态干扰。因此,在采矿和制造过程中采用可持续实践对于减少对我们星球的伤害至关重要。回收技术的创新也旨在从电子废物中回收有价值的晶体材料,为循环经济做出贡献。总之,晶体材料是自然和技术的不可或缺的一部分。它们独特的属性和结构为各个领域的创新和进步提供了无限可能。随着研究的不断展开,我们对晶体材料的理解无疑将导致突破,提升我们的生活质量,同时应对可持续性和环境保护方面的挑战。
相关单词