coordination compound

简明释义

配位化合物

英英释义

A coordination compound is a complex molecule formed from a central metal atom or ion bonded to surrounding molecules or anions, known as ligands.

配位化合物是由一个中心金属原子或离子与周围的分子或阴离子(称为配体)结合形成的复杂分子。

例句

1.The color change in a solution can indicate the formation of a coordination compound during a chemical reaction.

溶液中的颜色变化可以表明在化学反应过程中形成了配位化合物

2.Certain coordination compounds are used as catalysts in industrial processes.

某些配位化合物被用作工业过程中的催化剂。

3.The study of coordination compounds is essential for understanding transition metal chemistry.

研究配位化合物对于理解过渡金属化学至关重要。

4.In biochemistry, hemoglobin is a vital coordination compound that transports oxygen in the blood.

在生物化学中,血红蛋白是一种重要的配位化合物,负责在血液中运输氧气。

5.A common example of a coordination compound is the complex ion formed by copper(II) ions with ammonia.

一个常见的配位化合物例子是铜(II)离子与氨形成的配合物离子。

作文

Coordination compounds are fascinating chemical entities that play a crucial role in various fields, including chemistry, biology, and materials science. A coordination compound (配位化合物) consists of a central metal atom or ion bonded to surrounding molecules or ions, known as ligands. These ligands can be neutral molecules or anions, and they donate electron pairs to the metal, forming coordinate covalent bonds. The nature of these interactions significantly affects the properties and reactivity of the coordination compound (配位化合物). The study of coordination compounds (配位化合物) began in the 19th century and has since evolved into a complex field of research. One of the key aspects of these compounds is their ability to exhibit a variety of geometries, such as octahedral, tetrahedral, and square planar arrangements. This geometric diversity arises from the number of ligands attached to the metal center and their spatial arrangement. For instance, a metal ion surrounded by six ligands typically forms an octahedral geometry, which is common in transition metals.Another important characteristic of coordination compounds (配位化合物) is their color. The presence of different ligands can lead to distinct electronic transitions within the metal's d-orbitals, resulting in various colors. This property is extensively utilized in analytical chemistry for qualitative and quantitative analysis. For example, the vibrant colors of certain coordination compounds (配位化合物) can indicate the presence of specific metal ions in a solution, making them valuable tools for detecting pollutants or determining the concentration of metals in environmental samples.In biological systems, coordination compounds (配位化合物) are essential for life. Hemoglobin, the protein responsible for transporting oxygen in our blood, is a classic example of a coordination compound (配位化合物). It contains an iron ion coordinated to a heme group, allowing it to bind oxygen molecules effectively. Similarly, many enzymes rely on coordination compounds (配位化合物) to function properly, highlighting their significance in biochemical processes.Furthermore, coordination compounds (配位化合物) have numerous applications in materials science. They can be used to create novel materials with unique properties, such as luminescent compounds for display technologies or catalysts for chemical reactions. Researchers are continually exploring new ways to harness the potential of coordination compounds (配位化合物) in developing advanced materials and sustainable technologies.In conclusion, coordination compounds (配位化合物) are integral to various scientific disciplines and have far-reaching implications in both nature and technology. Their diverse structures, vibrant colors, and essential roles in biological systems make them a subject of great interest and ongoing research. As we continue to explore the world of coordination compounds (配位化合物), we uncover new insights that deepen our understanding of chemistry and its applications in real-world scenarios.

配位化合物是迷人的化学实体,在化学、生物学和材料科学等多个领域中发挥着至关重要的作用。配位化合物由一个中央金属原子或离子与周围的分子或离子(称为配体)结合而成。这些配体可以是中性分子或阴离子,它们向金属提供电子对,形成配位共价键。这些相互作用的性质显著影响了配位化合物的特性和反应性。对配位化合物的研究始于19世纪,并迅速发展成为一个复杂的研究领域。这些化合物的一个关键方面是它们能够表现出多种几何形状,如八面体、四面体和方平面排列。这种几何多样性源于附着在金属中心的配体数量及其空间排列。例如,周围有六个配体的金属离子通常形成八面体几何形状,这在过渡金属中很常见。配位化合物的另一个重要特征是它们的颜色。不同配体的存在可能导致金属d轨道内的不同电子跃迁,从而产生各种颜色。这一特性在分析化学中被广泛利用,用于定性和定量分析。例如,某些配位化合物的鲜艳颜色可以指示溶液中特定金属离子的存在,使其成为检测污染物或确定环境样品中金属浓度的宝贵工具。在生物系统中,配位化合物对生命至关重要。血红蛋白是负责运输氧气的经典例子,它是一种配位化合物,含有一个与血红素基团配位的铁离子,使其能够有效地结合氧分子。同样,许多酶依赖于配位化合物的正常功能,突显了它们在生化过程中的重要性。此外,配位化合物在材料科学中有许多应用。它们可用于创造具有独特性质的新材料,例如用于显示技术的发光化合物或用于化学反应的催化剂。研究人员不断探索利用配位化合物的潜力,以开发先进材料和可持续技术。总之,配位化合物在多个科学学科中是不可或缺的,对自然和技术都有深远的影响。它们多样的结构、鲜艳的颜色以及在生物系统中的重要角色使其成为一个极具兴趣和持续研究的主题。随着我们继续探索配位化合物的世界,我们发现新的见解,深化了我们对化学及其在现实世界应用中的理解。