electron attachment coefficient

简明释义

电子附着系数

英英释义

The electron attachment coefficient is a measure of the rate at which electrons are captured by neutral molecules or atoms in a gas phase, typically expressed in units of volume per unit time.

电子附着系数是衡量电子在气相中被中性分子或原子捕获的速率的指标,通常以体积每单位时间为单位表示。

例句

1.Researchers measured the electron attachment coefficient 电子附着系数 to determine the stability of the gas mixture.

研究人员测量了电子附着系数,以确定气体混合物的稳定性。

2.The electron attachment coefficient 电子附着系数 is a crucial parameter in understanding the behavior of gases in electric fields.

电子附着系数是理解气体在电场中行为的关键参数。

3.Understanding the electron attachment coefficient 电子附着系数 is essential for developing efficient electron beam devices.

理解电子附着系数对开发高效电子束设备至关重要。

4.The electron attachment coefficient 电子附着系数 varies with temperature and pressure, affecting the overall reaction kinetics.

电子附着系数随温度和压力变化,影响整体反应动力学。

5.In plasma physics, the electron attachment coefficient 电子附着系数 helps predict ionization rates.

在等离子体物理中,电子附着系数有助于预测电离率。

作文

In the realm of physical chemistry and atmospheric science, the concept of electron attachment coefficient plays a crucial role in understanding the behavior of electrons in gases. The electron attachment coefficient is defined as a measure of the rate at which electrons attach themselves to neutral molecules in a gas phase. This process is essential in various applications, including environmental science, plasma physics, and even in the design of electronic devices. When an electron collides with a neutral molecule, it can either be scattered elastically or attach to the molecule, forming a negative ion. The likelihood of this attachment occurring is quantified by the electron attachment coefficient. A higher coefficient indicates a greater probability of electron attachment, which can significantly influence the dynamics of ionization and recombination processes in the atmosphere.For instance, in the study of atmospheric chemistry, the electron attachment coefficient is vital for understanding how pollutants interact with electrons. When certain gases like sulfur dioxide or nitrogen oxides are present, they can lead to the formation of secondary pollutants through reactions involving attached electrons. The rates of these reactions can be modeled more accurately when the electron attachment coefficient is known, allowing scientists to predict the impact of various compounds on air quality.Moreover, in plasma physics, the electron attachment coefficient helps in understanding the stability and behavior of plasmas. Plasmas are composed of charged particles, and the attachment of electrons to neutral species can lead to the formation of negatively charged ions, affecting the overall charge balance in the plasma. This balance is crucial for applications such as fusion energy research, where maintaining a stable plasma state is essential for achieving the desired reactions.In electronic devices, particularly in the development of semiconductors, the electron attachment coefficient is relevant as well. Understanding how electrons behave in different materials can lead to improved designs and efficiencies in electronic components. For example, in organic light-emitting diodes (OLEDs), the attachment of electrons to specific molecules can affect the emission of light and the efficiency of the device.To measure the electron attachment coefficient, researchers often conduct experiments in controlled environments, using techniques such as mass spectrometry or laser-induced fluorescence. These methods allow for the precise determination of how quickly electrons attach to various molecules under different conditions, providing valuable data for theoretical models.In conclusion, the electron attachment coefficient is a fundamental parameter that influences a wide range of scientific fields. From atmospheric chemistry to plasma physics and electronics, understanding this coefficient allows researchers to model and predict the behavior of electrons in various environments. As technology advances and our understanding of these processes deepens, the significance of the electron attachment coefficient will continue to grow, paving the way for innovations and solutions to complex scientific challenges.

在物理化学和大气科学领域,电子附着系数的概念对于理解气体中电子的行为至关重要。电子附着系数被定义为电子附着到气相中中性分子的速率的量度。这个过程在各种应用中都是必不可少的,包括环境科学、等离子体物理学,甚至在电子设备的设计中。当电子与中性分子碰撞时,它可以以弹性方式散射或附着到分子上,形成负离子。发生这种附着的可能性由电子附着系数量化。更高的系数表示电子附着的概率更大,这可能显著影响大气中的电离和复合过程的动态。例如,在大气化学研究中,电子附着系数对于理解污染物如何与电子相互作用至关重要。当某些气体如二氧化硫或氮氧化物存在时,它们可以通过涉及附加电子的反应导致二次污染物的形成。当知道电子附着系数时,可以更准确地模拟这些反应的速率,从而预测各种化合物对空气质量的影响。此外,在等离子体物理学中,电子附着系数有助于理解等离子体的稳定性和行为。等离子体由带电粒子组成,电子附着到中性物种可能导致负离子的形成,影响等离子体中的整体电荷平衡。该平衡对于诸如核聚变能研究等应用至关重要,其中维持稳定的等离子体状态对于实现所需反应是必要的。在电子设备中,特别是在半导体的发展中,电子附着系数同样相关。了解电子在不同材料中的行为可以导致电子组件的设计和效率的改善。例如,在有机发光二极管(OLED)中,电子附着到特定分子上可以影响光的发射和设备的效率。为了测量电子附着系数,研究人员通常在受控环境中进行实验,使用质谱法或激光诱导荧光等技术。这些方法允许在不同条件下精确确定电子附着到各种分子的速度,为理论模型提供有价值的数据。总之,电子附着系数是影响广泛科学领域的基本参数。从大气化学到等离子体物理学和电子学,理解这个系数使研究人员能够建模和预测电子在各种环境中的行为。随着技术的进步和我们对这些过程的理解加深,电子附着系数的重要性将继续增长,为复杂科学挑战的创新和解决方案铺平道路。