electron affinity
简明释义
电子亲和力
英英释义
例句
1.In organic chemistry, the electron affinity of a molecule can influence its stability.
在有机化学中,分子的电子亲和力可以影响其稳定性。
2.Understanding the electron affinity of elements can help predict their reactivity.
理解元素的电子亲和力可以帮助预测它们的反应性。
3.The electron affinity of chlorine is higher than that of fluorine, making it more effective in forming negative ions.
氯的电子亲和力高于氟,使其在形成负离子时更有效。
4.The electron affinity values are crucial for chemists when designing new materials.
对于化学家来说,电子亲和力值在设计新材料时至关重要。
5.A high electron affinity indicates that an atom can easily gain an electron.
高电子亲和力表明一个原子可以很容易地获得一个电子。
作文
Electron affinity is a fundamental concept in chemistry that describes the energy change that occurs when an electron is added to a neutral atom. This property is crucial for understanding the behavior of elements, especially when they form ions. The concept of electron affinity (电子亲和力) helps chemists predict how different elements will interact with one another, particularly in the formation of compounds. When an atom gains an electron, it often releases energy. This release of energy is a reflection of the stability that results from the addition of the electron. For instance, halogens, which are found in Group 17 of the periodic table, have high electron affinities (电子亲和力) because they are one electron short of achieving a stable octet configuration. When these elements gain an electron, they become negatively charged ions, or anions, and this process is energetically favorable. On the other hand, noble gases, located in Group 18, have very low or even negative electron affinities (电子亲和力). This is because they already possess a complete valence shell, making them stable and unlikely to accept additional electrons. Therefore, the addition of an electron to a noble gas atom does not result in a significant energy release; instead, it may actually require energy input to force the electron into the atom. The electron affinity (电子亲和力) of an element can vary significantly across the periodic table. Generally, as we move from left to right across a period, the electron affinity (电子亲和力) increases. This trend can be attributed to the increasing nuclear charge, which attracts additional electrons more strongly. Conversely, as we move down a group, the electron affinity (电子亲和力) tends to decrease. This decrease is due to the increased distance between the nucleus and the outermost electrons, which weakens the attraction for the added electron. Understanding electron affinity (电子亲和力) is essential not only for predicting chemical reactivity but also for various applications in fields such as materials science and biochemistry. For example, in semiconductor technology, the electron affinity (电子亲和力) of materials is a critical factor in determining their electrical properties. Similarly, in biological systems, the electron affinity (电子亲和力) of molecules plays a role in enzyme activity and metabolic processes. In conclusion, electron affinity (电子亲和力) is a key property that influences how atoms interact and bond with each other. By studying this property, chemists can gain insights into the reactivity of different elements and predict the formation of new compounds. The variations in electron affinity (电子亲和力) across the periodic table highlight the diverse behaviors of elements and underscore the importance of this concept in the broader context of chemical science.
电子亲和力是化学中的一个基本概念,描述了当一个电子被添加到一个中性原子时所发生的能量变化。这一特性对于理解元素的行为至关重要,尤其是在它们形成离子时。电子亲和力(电子亲和力)的概念帮助化学家预测不同元素之间的相互作用,特别是在化合物的形成中。当一个原子获得一个电子时,通常会释放能量。这种能量的释放反映了由于添加电子而产生的稳定性。例如,卤素元素位于周期表的第17组,它们具有高的电子亲和力(电子亲和力),因为它们缺少一个电子以实现稳定的八电子构型。当这些元素获得一个电子时,它们变成带负电的离子,即阴离子,这一过程在能量上是有利的。另一方面,贵气体位于第18组,具有非常低甚至负的电子亲和力(电子亲和力)。这是因为它们已经拥有完整的价电子层,使其稳定且不太可能接受额外的电子。因此,向贵气体原子中添加电子不会导致显著的能量释放;相反,可能需要输入能量才能将电子强行引入原子中。元素的电子亲和力(电子亲和力)在整个周期表中可能会有显著的变化。一般来说,当我们从周期的左侧向右侧移动时,电子亲和力(电子亲和力)会增加。这一趋势可以归因于核电荷的增加,从而更强烈地吸引附加电子。相反,当我们向下移动一个族时,电子亲和力(电子亲和力)往往会降低。这一下降是由于原子核与最外层电子之间的距离增加,削弱了对附加电子的吸引力。理解电子亲和力(电子亲和力)不仅对于预测化学反应性是必不可少的,而且在材料科学和生物化学等领域也有各种应用。例如,在半导体技术中,材料的电子亲和力(电子亲和力)是决定其电气特性的关键因素。同样,在生物系统中,分子的电子亲和力(电子亲和力)在酶活性和代谢过程中起着重要作用。总之,电子亲和力(电子亲和力)是影响原子相互作用和结合的关键特性。通过研究这一特性,化学家可以深入了解不同元素的反应性,并预测新化合物的形成。周期表中电子亲和力(电子亲和力)的变化突显了元素的多样行为,并强调了这一概念在化学科学更广泛背景下的重要性。
相关单词