complete conductivity

简明释义

全导电性

英英释义

Complete conductivity refers to the ability of a material to allow the flow of electric current without any resistance or loss of energy.

完全导电性是指材料允许电流流动而没有任何阻力或能量损失的能力。

例句

1.Achieving complete conductivity 完全导电性 in nanomaterials can lead to advancements in quantum computing.

在纳米材料中实现完全导电性可能会推动量子计算的进展。

2.Researchers are exploring new compounds that can achieve complete conductivity 完全导电性 without the need for expensive metals.

研究人员正在探索新的化合物,这些化合物可以在不需要昂贵金属的情况下实现完全导电性

3.The material exhibited complete conductivity 完全导电性 at room temperature, making it ideal for electronic applications.

该材料在室温下表现出完全导电性完全导电性使其非常适合电子应用。

4.In superconductors, complete conductivity 完全导电性 allows for zero electrical resistance.

在超导体中,完全导电性允许零电阻。

5.The team developed a polymer that demonstrates complete conductivity 完全导电性 when doped with specific ions.

该团队开发了一种聚合物,当掺入特定离子时,显示出完全导电性

作文

In the realm of physics and materials science, the term complete conductivity refers to a state where a material can conduct electric current without any resistance. This phenomenon is most commonly associated with superconductors, which are materials that exhibit this property at very low temperatures. The concept of complete conductivity is crucial for understanding how electricity can flow through certain materials without losing energy to heat, thus enabling a range of applications from powerful electromagnets to efficient power transmission systems.The significance of complete conductivity lies in its implications for modern technology. For instance, in the field of electronics, achieving complete conductivity means that devices can operate more efficiently, leading to longer battery life and reduced energy consumption. This is particularly important in an era where energy efficiency is paramount due to environmental concerns and the need for sustainable energy solutions.Moreover, complete conductivity opens up new avenues for research and development. Scientists are constantly exploring new materials that can achieve this state at higher temperatures, which would make superconducting technologies more accessible and practical for everyday use. Currently, most known superconductors require extremely low temperatures, often necessitating complex cooling systems that can be expensive and cumbersome.The potential applications of complete conductivity are vast. In transportation, for example, magnetic levitation trains utilize superconducting magnets to float above tracks, reducing friction and allowing for incredibly high speeds. In medical technology, MRI machines rely on superconducting materials to create strong magnetic fields necessary for imaging. These examples illustrate how complete conductivity not only enhances existing technologies but also paves the way for breakthroughs in various fields.However, achieving complete conductivity is not without its challenges. Researchers must navigate the intricacies of material properties and the conditions required for superconductivity to manifest. The quest for room-temperature superconductors remains one of the holy grails of physics, as it would revolutionize how we generate, store, and transmit electrical energy.In summary, complete conductivity represents a remarkable state of matter that has far-reaching implications for both science and technology. As we continue to explore the properties of materials and push the boundaries of what is possible, the pursuit of complete conductivity will likely remain a central focus of research, promising innovations that could change our world for the better. The journey towards harnessing this phenomenon is not just about academic curiosity; it is about finding solutions to some of the most pressing challenges we face today, including energy efficiency and sustainable development.

在物理学和材料科学领域,术语完全导电性指的是一种材料能够在没有任何电阻的情况下导电的状态。这种现象最常与超导体相关联,超导体是在非常低的温度下表现出这种特性的材料。完全导电性的概念对于理解电流如何在某些材料中流动而不向热量损失能量至关重要,从而使从强大的电磁铁到高效的电力传输系统等一系列应用成为可能。完全导电性的重要性在于它对现代技术的影响。例如,在电子学领域,实现完全导电性意味着设备可以更高效地运行,从而延长电池寿命并减少能耗。在当今这个能源效率至关重要的时代,考虑环境问题和可持续能源解决方案,这一点尤为重要。此外,完全导电性为研究和开发开辟了新的途径。科学家们不断探索能够在更高温度下实现这种状态的新材料,这将使超导技术对日常使用更易于获取和实用。目前,大多数已知的超导体需要极低的温度,通常需要复杂的冷却系统,这些系统可能既昂贵又笨重。完全导电性的潜在应用是广泛的。例如,在交通运输领域,磁悬浮列车利用超导磁体悬浮在轨道上,减少摩擦,从而实现极高的速度。在医疗技术领域,MRI机器依赖超导材料产生成像所需的强磁场。这些例子说明了完全导电性不仅增强了现有技术,还为各个领域的突破铺平了道路。然而,实现完全导电性并非没有挑战。研究人员必须驾驭材料特性及超导性表现所需条件的复杂性。寻找室温超导体仍然是物理学的圣杯之一,因为这将彻底改变我们生成、存储和传输电能的方式。总之,完全导电性代表了一种具有深远影响的物质状态,对科学和技术都有着重要的意义。随着我们继续探索材料的性质并推动可能性的边界,追求完全导电性很可能将继续成为研究的中心焦点,承诺着可以改变我们世界的创新。追求这一现象的旅程不仅关乎学术好奇心;它关乎寻找解决我们今天面临的一些最紧迫挑战的方案,包括能源效率和可持续发展。

相关单词

conductivity

conductivity详解:怎么读、什么意思、用法