circular velocity

简明释义

圆周速度

英英释义

Circular velocity refers to the speed required for an object to maintain a stable circular orbit around a central body due to gravitational forces.

圆周速度是指一个物体为了因重力作用而维持在中心天体周围的稳定圆形轨道所需的速度。

例句

1.If the circular velocity of a moon is too low, it may eventually spiral into its planet.

如果一颗卫星的圆周速度太低,它可能最终会螺旋下降到其行星中。

2.Engineers must ensure that the circular velocity of a spacecraft is sufficient for its mission.

工程师必须确保航天器的圆周速度足以完成其任务。

3.To calculate the circular velocity of a satellite, you need to know its distance from the Earth.

要计算卫星的圆周速度,您需要知道它与地球的距离。

4.The circular velocity of the International Space Station allows it to stay in low Earth orbit.

国际空间站的圆周速度使其能够保持在低地球轨道。

5.The planet's circular velocity is crucial for maintaining its orbit around the sun.

行星的圆周速度对于保持其围绕太阳的轨道至关重要。

作文

In the realm of physics, particularly in the study of celestial mechanics, the concept of circular velocity plays a crucial role in understanding the motion of objects in orbit. The term circular velocity refers to the constant speed at which an object must travel to maintain a stable circular orbit around a massive body, such as a planet or a star. This velocity is essential for satellites and other celestial bodies to avoid falling into the gravitational pull of the larger mass they are orbiting.To grasp the significance of circular velocity, one must first consider the forces at play during orbital motion. When an object is in orbit, it experiences two primary forces: gravitational force pulling it towards the center of the massive body and the inertial force that acts outward due to the object's motion. For an object to remain in a stable circular path, these forces must be balanced. The gravitational force must equal the centripetal force required to keep the object moving in a circle.The formula for calculating circular velocity is derived from this balance of forces. It can be expressed mathematically as: v = √(GM/r)Where:- v is the circular velocity,- G is the universal gravitational constant,- M is the mass of the central body, and- r is the radius of the orbit.This equation indicates that the circular velocity depends on the mass of the central body and the distance from its center. As the distance increases, the required circular velocity decreases. For instance, a satellite orbiting close to Earth needs to travel faster than one that is farther away. This principle is fundamental in satellite design and deployment, as engineers must calculate the necessary circular velocity to ensure that satellites can successfully maintain their orbits.Another fascinating aspect of circular velocity is its application beyond Earth. Different celestial bodies have varying masses, which directly affect the circular velocity required for orbiting objects. For example, the circular velocity for a satellite orbiting Jupiter will be significantly different from that of a satellite orbiting Mars due to the differences in mass and size.Moreover, understanding circular velocity also has practical implications for space exploration. Missions to other planets or moons require precise calculations of circular velocity to ensure that spacecraft can enter and exit orbits safely. This knowledge allows scientists and engineers to plan trajectories and maneuvers that conserve fuel and optimize time.In conclusion, the concept of circular velocity is not only a fundamental principle in physics but also a critical factor in modern space exploration and satellite technology. By understanding how circular velocity operates, we gain insights into the dynamics of our universe and the intricate dance of celestial bodies. As we continue to explore beyond our planet, the principles of circular velocity will undoubtedly remain at the forefront of our scientific endeavors, guiding us in our quest to understand the cosmos.

在物理学领域,特别是在天体力学的研究中,circular velocity(圆周速度)的概念在理解轨道上物体的运动方面起着至关重要的作用。术语circular velocity指的是物体必须以恒定速度移动,以维持绕行一个大质量天体(如行星或恒星)的稳定圆形轨道。这一速度对于卫星和其他天体避免落入它们所环绕的大质量物体的引力范围是至关重要的。要理解circular velocity的重要性,首先必须考虑轨道运动中涉及的力。当一个物体在轨道上时,它会经历两种主要力量:引力将其拉向大质量天体的中心,以及由于物体运动而向外作用的惯性力。为了使物体保持在稳定的圆形路径上,这些力量必须相互平衡。引力必须等于保持物体运动所需的向心力。circular velocity的计算公式源于这种力的平衡。它可以用数学公式表示为:v = √(GM/r)其中:- v 是circular velocity(圆周速度),- G 是万有引力常数,- M 是中心体的质量,- r 是轨道半径。这个方程表明,circular velocity取决于中心体的质量和距离中心的距离。随着距离的增加,所需的circular velocity会减少。例如,近地轨道上的卫星需要比远离地球的卫星更快的速度。这一原理在卫星设计和部署中至关重要,因为工程师必须计算所需的circular velocity以确保卫星能够成功维持其轨道。circular velocity的另一个引人入胜的方面是它在地球之外的应用。不同的天体具有不同的质量,这直接影响到轨道物体所需的circular velocity。例如,环绕木星的卫星的circular velocity将与环绕火星的卫星显著不同,因为它们的质量和大小各异。此外,理解circular velocity也对太空探索具有实际意义。前往其他行星或月球的任务需要精确计算circular velocity,以确保航天器能够安全进出轨道。这一知识使科学家和工程师能够规划节省燃料和优化时间的轨迹和机动。总之,circular velocity的概念不仅是物理学中的基本原理,也是现代太空探索和卫星技术中的关键因素。通过理解circular velocity的运作方式,我们获得了对宇宙动力学的洞察,以及天体之间复杂舞蹈的理解。随着我们继续探索地球以外的空间,circular velocity的原理无疑将在我们的科学努力中处于前沿,引导我们理解宇宙的追求。

相关单词

circular

circular详解:怎么读、什么意思、用法

velocity

velocity详解:怎么读、什么意思、用法