interpolator

简明释义

[/ˈɪntərpəˌleɪtər/][/ˈɪntərpəˌleɪtər/]

n. 窜改者;内插程序

英英释义

An interpolator is a mathematical function or algorithm used to estimate unknown values that fall within the range of a discrete set of known data points.

插值器是一种数学函数或算法,用于估计落在一组离散已知数据点范围内的未知值。

单词用法

同义词

estimator

估计器

The estimator is used to predict values based on existing data points.

估计器用于根据现有数据点预测值。

interpolant

插值函数

An interpolant helps in filling the gaps in data sets for smoother transitions.

插值函数帮助填补数据集中的空白,以实现更平滑的过渡。

approximator

近似器

An approximator can be used in mathematical modeling to simplify complex functions.

近似器可以用于数学建模,以简化复杂函数。

反义词

extrapolator

外推器

The extrapolator is used to predict values outside the known data range.

外推器用于预测已知数据范围之外的值。

discriminator

区分器

A discriminator helps in distinguishing between different classes of data.

区分器帮助区分不同类别的数据。

例句

1.To meet the demands of high-speed machining of continuous short-segments, a high-speed interpolator based on the space arc transition is proposed.

针对连续短线段高速加工控制需求,研究了利用空间圆弧转接实现高速插补的方法。

2.The loop is a second order phase lock loop, consisting of an interpolator, a timing error detector and a loop filter.

环路为反馈结构,包括插值器、时钟误差检测和环路滤波器三个部分。

3.The digital stereo encoder applied in FM broadcast is accomplished with DSP chip TMS320C50 and high-speed A/D chip. The method of digital interpolator in digital FM stereo encoder is proposed.

介绍了采用DSP芯片TMS320C50及高速A/D芯片实现的调频广播用的数字调频立体声编码器及其结构。

4.The NURBS curve direct interpolator was investigated in detail aimed at the demand of complex profile parts'high speed and high accuracy CNC machining.

针对复杂型面零件的高速高精度加工需要,深入研究了NURBS曲线直接插补方法。

5.In this paper, a detailed analysis of a phase interpolator for clock recovery is presented.

分析了应用于时钟恢复电路中的相位插值器。

6.Besides the inputting and outputting data, the framework can be divided into four parts: interpolator, measurer, optimizer and transformer.

除了输入和输出数据,整个框架包括四个组成部分:插值器、度量器、优化器和变换器。

7.The interpolator algorithm for cutter's motion locus is an important manufacturing technology problem in CNC machining.

在CNC加工中,刀具运动轨迹的插补算法是一个重要的技术问题。

8.The fine - interpolator with high - speed interpolating is easy to be designed and applied. It can be used for high - speed machining control.

该精插补器具有设计简单、易于实现、插补速度高等特点,可适用于高速数控系统的开发。

9.A programmable decimation and interpolation ratio module onnected with multistage cascade integrator comb (CIC) filter is designed to implement high efficient decimator and interpolator.

将可编程抽取、插值器与多级积分梳状滤波器(CIC)相配合,实现高效数字抽取和插值模块。

10.The graphics engine employs a bilinear interpolator to enhance image quality.

图形引擎使用双线性插值器来提高图像质量。

11.The software uses an interpolator to create smooth transitions between keyframes in animation.

该软件使用插值器在动画的关键帧之间创建平滑过渡。

12.Using an interpolator can significantly improve the accuracy of numerical simulations.

使用插值器可以显著提高数值模拟的准确性。

13.In data analysis, an interpolator helps fill in missing values in a dataset.

在数据分析中,插值器帮助填补数据集中缺失的值。

14.The audio processing software features a time-domain interpolator for better sound quality.

该音频处理软件具有时域插值器以提高音质。

作文

In the realm of mathematics and computer science, the concept of an interpolator plays a crucial role in data analysis and graphical representation. An interpolator is a mathematical function or algorithm that estimates unknown values between two known values. This process of interpolation is essential in various fields such as engineering, graphics, and statistics, where data points are often limited or incomplete. By utilizing an interpolator, one can create a smooth curve or surface that fits through the known data points, allowing for predictions and insights that would otherwise be unattainable.For instance, consider the scenario of creating a digital image. Each pixel in the image represents a specific color value at a particular coordinate. However, when resizing the image, the new pixel values must be calculated based on the original ones. Here, an interpolator is employed to estimate the colors of the new pixels by considering the colors of adjacent pixels. There are various methods of interpolation, including linear, polynomial, and spline interpolation, each with its advantages and limitations.Linear interpolation is the simplest form, where the interpolator connects two known data points with a straight line. While this method is easy to implement, it may not always provide the most accurate results, especially when dealing with non-linear data. Polynomial interpolation, on the other hand, uses polynomial functions to estimate values, which can yield better accuracy but may also lead to issues such as Runge's phenomenon, where oscillations occur between the known points.Spline interpolation offers a compromise by using piecewise polynomials, ensuring that the interpolated curve is smooth and continuous. This method is particularly useful in computer graphics, where smooth transitions between colors and shapes are desired. By employing an interpolator, designers can create visually appealing images and animations that enhance user experience.In the field of statistics, an interpolator can be used to fill in missing data points in a dataset. For example, if a researcher collects data on temperature readings at different times but misses a few readings, they can use an interpolator to estimate the missing values based on the available data. This approach allows for more comprehensive analysis and helps in making informed decisions based on complete datasets.Moreover, in scientific research, the use of an interpolator is vital for modeling phenomena that cannot be directly measured. For example, in climate science, researchers often rely on interpolation techniques to estimate temperature and precipitation levels in regions where direct measurements are scarce. By applying an interpolator, they can create more accurate climate models that aid in understanding and predicting environmental changes.In conclusion, the role of an interpolator is indispensable in various domains, from computer graphics to scientific research. It enables us to bridge the gaps between known data points, facilitating better analysis, visualization, and prediction. As technology continues to advance, the importance of effective interpolation techniques will only grow, highlighting the need for ongoing research and development in this area. Understanding how to implement and utilize an interpolator effectively can empower individuals and organizations to make more informed decisions based on data, ultimately driving innovation and progress in numerous fields.

在数学和计算机科学领域,插值器的概念在数据分析和图形表示中发挥着重要作用。插值器是一个数学函数或算法,用于估计两个已知值之间的未知值。这种插值过程在工程、图形和统计等各个领域都是必不可少的,因为数据点通常是有限或不完整的。通过利用插值器,人们可以创建一条平滑的曲线或表面,使其通过已知的数据点,从而允许做出原本无法实现的预测和洞察。例如,考虑创建数字图像的场景。图像中的每个像素代表特定坐标处的颜色值。然而,在调整图像大小时,必须根据原始像素计算新像素值。在这里,使用插值器通过考虑相邻像素的颜色来估计新像素的颜色。有多种插值方法,包括线性插值、多项式插值和样条插值,每种方法都有其优缺点。线性插值是最简单的形式,其中插值器用一条直线连接两个已知数据点。虽然这种方法易于实现,但在处理非线性数据时,可能不会提供最准确的结果。另一方面,多项式插值使用多项式函数来估计值,这可以产生更好的精度,但也可能导致如龙格现象等问题,即在已知点之间发生振荡。样条插值通过使用分段多项式提供了一种折衷方案,确保插值曲线光滑且连续。这种方法在计算机图形学中尤其有用,因为需要在颜色和形状之间实现平滑过渡。通过使用插值器,设计师可以创建视觉上吸引人的图像和动画,从而增强用户体验。在统计领域,插值器可用于填补数据集中缺失的数据点。例如,如果研究人员在不同时间收集温度读数但错过了一些读数,他们可以使用插值器根据可用数据估计缺失的值。这种方法使得更全面的分析成为可能,并帮助做出基于完整数据集的明智决策。此外,在科学研究中,使用插值器对于建模无法直接测量的现象至关重要。例如,在气候科学中,研究人员通常依赖插值技术来估计缺乏直接测量的地区的温度和降水水平。通过应用插值器,他们可以创建更准确的气候模型,以帮助理解和预测环境变化。总之,插值器在各个领域的角色不可或缺,从计算机图形学到科学研究。它使我们能够弥补已知数据点之间的空白,促进更好的分析、可视化和预测。随着技术的不断进步,有效插值技术的重要性只会增加,突显了在这一领域持续研究和发展的必要性。理解如何有效地实施和利用插值器可以使个人和组织能够基于数据做出更明智的决策,从而推动各个领域的创新和进步。