creep strength

简明释义

蠕需变强度

英英释义

Creep strength is the maximum stress that a material can withstand at elevated temperatures over a prolonged period without undergoing permanent deformation.

蠕变强度是指材料在高温下经过较长时间后,能够承受而不发生永久变形的最大应力。

例句

1.The engineers tested the material to determine its creep strength 蠕变强度 at high temperatures.

工程师测试材料以确定其在高温下的creep strength 蠕变强度

2.In aerospace applications, creep strength 蠕变强度 is crucial for ensuring structural integrity over time.

在航空航天应用中,creep strength 蠕变强度 对于确保结构完整性至关重要。

3.Testing revealed that the creep strength 蠕变强度 of the polymer decreased significantly with temperature.

测试显示,该聚合物的creep strength 蠕变强度 随温度显著下降。

4.The alloy was chosen for its excellent creep strength 蠕变强度 under prolonged stress.

该合金因其在长期应力下的优异creep strength 蠕变强度而被选中。

5.Manufacturers must account for creep strength 蠕变强度 when designing components for high-load applications.

制造商在为高负载应用设计组件时必须考虑creep strength 蠕变强度

作文

Creep strength is a critical property of materials that engineers and designers must consider when selecting materials for high-temperature applications. This term refers to the ability of a material to withstand deformation under constant stress over time, particularly at elevated temperatures. When materials are subjected to prolonged exposure to heat and stress, they can undergo a gradual and permanent deformation known as creep. Understanding the concept of creep strength (蠕变强度) is essential for ensuring the reliability and safety of components in various industries, such as aerospace, automotive, and power generation.In engineering, creep strength (蠕变强度) is defined as the maximum stress that a material can endure without experiencing significant creep deformation over a specified period. This property is especially important for materials like metals, polymers, and composites that are used in environments where they are exposed to high temperatures and mechanical loads. For instance, turbine blades in jet engines operate at extreme temperatures and pressures, making their creep strength (蠕变强度) a vital consideration during design and material selection.The phenomenon of creep can be divided into three stages: primary, secondary, and tertiary. In the primary stage, the rate of creep decreases with time as the material adjusts to the applied load. During the secondary stage, the creep rate becomes relatively constant, and this is where creep strength (蠕变强度) is most relevant. The tertiary stage involves an accelerated creep rate leading to failure. Engineers must ensure that the materials chosen for specific applications have adequate creep strength (蠕变强度) to prevent catastrophic failures.To assess the creep strength (蠕变强度) of a material, standardized tests are conducted, which involve subjecting samples to a constant load at elevated temperatures for extended periods. The results from these tests provide valuable data on how long a material can maintain its structural integrity under specific conditions. These data points are crucial for predicting the lifespan of components and for making informed decisions about maintenance schedules and replacement intervals.In addition to temperature, other factors such as material composition, grain size, and environmental conditions can influence creep strength (蠕变强度). For example, alloying elements can enhance the creep resistance of metals by refining their microstructure and improving their mechanical properties. Similarly, the manufacturing process can affect the creep strength (蠕变强度) of materials, as processes like forging and heat treatment can lead to more favorable microstructural characteristics.In conclusion, understanding creep strength (蠕变强度) is essential for engineers and material scientists working with high-temperature applications. It plays a crucial role in ensuring the safety and reliability of components subjected to prolonged stress and heat. As technology advances and industries continue to push the limits of material performance, the importance of accurately measuring and understanding creep strength (蠕变强度) will only grow, paving the way for innovations in material science and engineering practices.

蠕变强度是材料的一个关键属性,工程师和设计师在选择高温应用的材料时必须考虑这一点。这个术语指的是材料在恒定应力下随时间承受变形的能力,特别是在高温下。当材料长时间暴露于热量和应力下时,它们可能会经历一种称为蠕变的逐渐且永久的变形。理解creep strength(蠕变强度)的概念对于确保各行业组件的可靠性和安全性至关重要,例如航空航天、汽车和电力生产。在工程学中,creep strength(蠕变强度)被定义为材料在特定时间内能承受而不发生显著蠕变变形的最大应力。这一属性对于在高温和机械负荷环境中使用的金属、聚合物和复合材料等材料尤为重要。例如,喷气发动机中的涡轮叶片在极端温度和压力下工作,因此它们的creep strength(蠕变强度)在设计和材料选择中是一个至关重要的考虑因素。蠕变现象可以分为三个阶段:初级、次级和三级。在初级阶段,蠕变速率随着时间的推移而降低,因为材料适应施加的负载。在次级阶段,蠕变速率相对恒定,此时creep strength(蠕变强度)最为相关。三级阶段涉及加速的蠕变速率,导致失效。工程师必须确保所选材料具有足够的creep strength(蠕变强度),以防止灾难性的失败。为了评估材料的creep strength(蠕变强度),进行标准化测试,将样品在高温下施加恒定负载,持续一段时间。这些测试结果提供了有关材料在特定条件下保持结构完整性的时长的宝贵数据。这些数据对于预测组件的使用寿命以及制定维护计划和更换周期的决策至关重要。除了温度外,其他因素如材料成分、晶粒大小和环境条件也会影响creep strength(蠕变强度)。例如,合金元素可以通过细化金属的微观结构和改善其机械性能来增强金属的蠕变抗性。同样,制造过程也会影响材料的creep strength(蠕变强度),例如锻造和热处理等工艺可以导致更有利的微观结构特征。总之,理解creep strength(蠕变强度)对于从事高温应用的工程师和材料科学家至关重要。它在确保承受长期应力和热量的组件的安全性和可靠性方面发挥着至关重要的作用。随着技术的进步和各行业不断突破材料性能的极限,准确测量和理解creep strength(蠕变强度)的重要性只会增加,为材料科学和工程实践的创新铺平道路。

相关单词

creep

creep详解:怎么读、什么意思、用法

strength

strength详解:怎么读、什么意思、用法