Cartesian coordinates

简明释义

平面直角坐标

英英释义

A coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances from two fixed perpendicular directed lines, called axes.

一种坐标系统,通过一对数值坐标唯一地指定平面中的每个点,这些坐标是从两个固定的垂直定向线(称为坐标轴)到该点的有符号距离。

例句

1.The distance between two points can be calculated using the formula derived from Cartesian coordinates (笛卡尔坐标).

两个点之间的距离可以使用从笛卡尔坐标笛卡尔坐标)推导出的公式进行计算。

2.When plotting a graph, you need to convert data points into Cartesian coordinates (笛卡尔坐标).

绘制图表时,您需要将数据点转换为笛卡尔坐标笛卡尔坐标)。

3.In physics, Cartesian coordinates (笛卡尔坐标) are often used to describe the position of an object in space.

在物理学中,笛卡尔坐标笛卡尔坐标)通常用于描述物体在空间中的位置。

4.Many computer graphics applications use Cartesian coordinates (笛卡尔坐标) to position objects on the screen.

许多计算机图形应用程序使用笛卡尔坐标笛卡尔坐标)在屏幕上定位对象。

5.In a two-dimensional space, we can represent any point using Cartesian coordinates (笛卡尔坐标) like (x, y).

在二维空间中,我们可以使用笛卡尔坐标笛卡尔坐标)像 (x, y) 来表示任何点。

作文

In the realm of mathematics and physics, understanding the concept of Cartesian coordinates is essential for analyzing and representing geometric shapes and spatial relationships. The term Cartesian coordinates refers to a system that uses two or three perpendicular axes to define the position of points in a plane or in space. This system was developed by the French mathematician René Descartes, hence the name 'Cartesian'. In a two-dimensional space, the Cartesian coordinates are represented by an ordered pair (x, y), where 'x' denotes the horizontal position and 'y' indicates the vertical position. Similarly, in three-dimensional space, a point is defined by an ordered triplet (x, y, z). The beauty of Cartesian coordinates lies in its simplicity and effectiveness. It allows us to easily plot points, lines, and curves on a graph. For instance, if we want to represent the point (3, 4) on a two-dimensional grid, we start at the origin (0, 0), move 3 units to the right along the x-axis, and then move 4 units up along the y-axis. This straightforward approach makes it easier for students and professionals alike to visualize mathematical concepts. Moreover, Cartesian coordinates serve as a foundation for various mathematical disciplines such as algebra, calculus, and geometry. In algebra, for example, we can express linear equations in the form y = mx + b, where 'm' is the slope and 'b' is the y-intercept. By using Cartesian coordinates, we can graph these equations and analyze their properties, such as intersections and parallelism. In calculus, Cartesian coordinates enable us to examine functions and their rates of change. We can determine the derivative of a function by finding the slope of the tangent line at any given point on the graph. This process is crucial for understanding motion, optimization, and other real-world applications. Furthermore, Cartesian coordinates extend beyond simple graphing. They can be transformed into other coordinate systems, such as polar coordinates, which represent points in terms of their distance from the origin and the angle from the positive x-axis. This transformation is particularly useful in fields like physics, where circular motion is involved. Another significant aspect of Cartesian coordinates is its application in computer graphics and animation. In these fields, objects are often represented using Cartesian coordinates to create realistic images and animations. By manipulating these coordinates, artists and programmers can create intricate designs and movements within a digital environment. In conclusion, the concept of Cartesian coordinates is fundamental in various branches of mathematics and science. Its utility in representing points, analyzing equations, and facilitating transformations makes it an indispensable tool for students and professionals. By mastering Cartesian coordinates, one gains a deeper understanding of spatial relationships and mathematical principles, paving the way for further exploration in both theoretical and applied fields. Thus, the study of Cartesian coordinates not only enhances our mathematical skills but also enriches our ability to interpret and interact with the world around us.

在数学和物理的领域中,理解笛卡尔坐标的概念对于分析和表示几何形状及空间关系至关重要。术语笛卡尔坐标指的是一种使用两个或三个垂直坐标轴来定义平面或空间中点的位置的系统。这个系统是由法国数学家勒内·笛卡尔开发的,因此得名“笛卡尔”。在二维空间中,笛卡尔坐标用有序对(x, y)表示,其中'x'表示水平位置,而'y'表示垂直位置。同样,在三维空间中,一个点由有序三元组(x, y, z)定义。笛卡尔坐标的美在于其简单性和有效性。它使我们能够轻松地在图表上绘制点、线和曲线。例如,如果我们想在二维网格上表示点(3, 4),我们从原点(0, 0)开始,沿着x轴向右移动3个单位,然后沿着y轴向上移动4个单位。这种直接的方法使学生和专业人士更容易可视化数学概念。此外,笛卡尔坐标作为代数、微积分和几何等各种数学学科的基础。在代数中,例如,我们可以以y = mx + b的形式表达线性方程,其中'm'是斜率,'b'是y截距。通过使用笛卡尔坐标,我们可以绘制这些方程并分析其性质,例如交点和平行性。在微积分中,笛卡尔坐标使我们能够检查函数及其变化率。我们可以通过找到图中任意给定点的切线斜率来确定函数的导数。这个过程对于理解运动、优化和其他现实世界的应用至关重要。此外,笛卡尔坐标不仅限于简单的图形绘制。它们可以转换为其他坐标系统,例如极坐标,后者用点到原点的距离和与正x轴的角度来表示点。这种转换在物理等领域中特别有用,因为这些领域涉及到圆周运动。笛卡尔坐标的另一个重要方面是其在计算机图形和动画中的应用。在这些领域中,物体通常使用笛卡尔坐标表示,以创建逼真的图像和动画。通过操纵这些坐标,艺术家和程序员可以在数字环境中创建复杂的设计和运动。总之,笛卡尔坐标的概念在各种数学和科学分支中是基础。它在表示点、分析方程和促进变换中的实用性,使其成为学生和专业人士不可或缺的工具。通过掌握笛卡尔坐标,人们可以更深入地理解空间关系和数学原理,为进一步探索理论和应用领域铺平道路。因此,学习笛卡尔坐标不仅增强了我们的数学技能,还丰富了我们解读和与周围世界互动的能力。

相关单词

coordinates

coordinates详解:怎么读、什么意思、用法