capsizing moment pawl-rim

简明释义

绞盘底盘

英英释义

The capsizing moment pawl-rim refers to a mechanical component designed to prevent the overturning or capsizing of a system, typically involving a pawl that engages with a rim to lock or secure a position during critical moments.

翻覆时刻棘轮边缘是指一个机械部件,旨在防止系统的翻覆或倾覆,通常涉及一个与边缘啮合的棘爪,在关键时刻锁定或固定位置。

例句

1.The team conducted tests to measure the impact of the capsizing moment pawl-rim on different hull shapes.

团队进行了测试,以测量翻覆力矩棘轮边缘对不同船体形状的影响。

2.During the simulation, we observed that the capsizing moment pawl-rim could significantly alter the boat's tipping point.

在模拟过程中,我们观察到翻覆力矩棘轮边缘会显著改变船只的倾斜点。

3.The engineer explained how the capsizing moment pawl-rim affects the stability of the vessel during rough seas.

工程师解释了翻覆力矩棘轮边缘在恶劣海况下如何影响船只的稳定性。

4.In our latest design, we incorporated a new feature to enhance the capsizing moment pawl-rim performance.

在我们最新的设计中,我们加入了一个新功能以增强翻覆力矩棘轮边缘的性能。

5.The safety manual highlighted the importance of understanding the capsizing moment pawl-rim for preventing accidents.

安全手册强调了理解翻覆力矩棘轮边缘对于防止事故的重要性。

作文

The concept of a capsizing moment pawl-rim is crucial in understanding the dynamics of mechanical systems, particularly those that involve rotational movements. In engineering, a 'pawl' is a device that allows movement in one direction while preventing movement in the opposite direction. It is often used in conjunction with gears or ratchets to control motion. The 'rim' refers to the circular edge of a wheel or gear, where significant forces can act during operation. When we talk about the 'capsizing moment pawl-rim', we are essentially discussing the critical point at which a system may become unstable and overturn due to excessive force or torque applied at the rim of a rotating mechanism.To illustrate this further, consider a mechanical clock. The gears inside the clock must rotate smoothly to keep accurate time. If too much force is applied to the gear's rim, it can cause the pawl to slip, leading to a loss of control over the clock's movement. This scenario is a practical example of a 'capsizing moment pawl-rim' in action, where the balance between force and stability is essential for proper function.Understanding the 'capsizing moment pawl-rim' is not limited to mechanical systems; it can also be applied to various fields such as robotics, aviation, and even marine engineering. For instance, in the design of a ship, engineers must consider how the weight distribution affects the vessel's stability. If the center of gravity shifts too far, the ship can experience a 'capsizing moment pawl-rim', leading to potential capsizing. Thus, designers must ensure that the ship’s structure can withstand these forces without compromising safety.Moreover, the implications of the 'capsizing moment pawl-rim' extend into safety regulations and standards within engineering practices. For example, safety mechanisms must be in place to prevent accidents caused by unexpected shifts in weight or force. Engineers often conduct simulations to predict how systems will behave under various conditions, allowing them to identify potential 'capsizing moment pawl-rim' scenarios before they occur in real-life applications.In conclusion, the 'capsizing moment pawl-rim' is a vital concept that underlines the importance of stability in mechanical systems. Whether in clocks, ships, or robots, understanding how forces interact with moving parts helps engineers create safer and more reliable designs. As technology continues to advance, the principles surrounding the 'capsizing moment pawl-rim' will remain integral to the development of innovative solutions that prioritize both functionality and safety.

‘翻覆时刻棘轮边缘’的概念在理解机械系统的动态中至关重要,特别是那些涉及旋转运动的系统。在工程学中,‘棘轮’是一种允许单向运动而防止反向运动的装置。它通常与齿轮或棘轮一起使用,以控制运动。而‘边缘’则指的是轮子或齿轮的圆形边缘,在操作过程中可能会施加显著的力量。当我们谈论‘翻覆时刻棘轮边缘’时,我们实际上是在讨论一个系统可能因施加在旋转机制边缘的过大力矩而变得不稳定并翻倒的临界点。为了进一步说明这一点,考虑一下机械钟表。钟表内部的齿轮必须平稳旋转以保持准确的时间。如果对齿轮的边缘施加了过大的力量,可能会导致棘轮滑动,从而失去对钟表运动的控制。这种情况是‘翻覆时刻棘轮边缘’在实际应用中的一个例子,其中力量与稳定性之间的平衡对于正常功能至关重要。理解‘翻覆时刻棘轮边缘’不仅限于机械系统;它还可以应用于机器人技术、航空以及海洋工程等多个领域。例如,在船只设计中,工程师必须考虑重量分布如何影响船只的稳定性。如果重心移动得太远,船只可能会经历‘翻覆时刻棘轮边缘’,导致潜在的翻覆。因此,设计师必须确保船体结构能承受这些力量,而不危及安全。此外,‘翻覆时刻棘轮边缘’的影响还扩展到工程实践中的安全法规和标准。例如,必须有安全机制以防止由于意外的重量或力量变化引发的事故。工程师通常会进行模拟,以预测系统在各种条件下的行为,使他们能够在实际应用中识别潜在的‘翻覆时刻棘轮边缘’场景。总之,‘翻覆时刻棘轮边缘’是一个重要的概念,强调了机械系统中稳定性的重要性。无论是在钟表、船只还是机器人中,理解力量如何与运动部件相互作用帮助工程师创造更安全、更可靠的设计。随着技术的不断进步,围绕‘翻覆时刻棘轮边缘’的原则将继续成为优先考虑功能和安全的创新解决方案发展的核心。