brake mean effective pressure
简明释义
平均制动有效压力
英英释义
例句
1.To optimize fuel consumption, engineers focus on increasing the brake mean effective pressure 制动平均有效压力 in the combustion chamber.
为了优化燃料消耗,工程师专注于提高燃烧室中的brake mean effective pressure 制动平均有效压力。
2.Higher brake mean effective pressure 制动平均有效压力 often indicates a more efficient engine design.
较高的brake mean effective pressure 制动平均有效压力通常表明更高效的发动机设计。
3.During the dynamometer test, we recorded the brake mean effective pressure 制动平均有效压力 to assess the engine's efficiency.
在测功机测试中,我们记录了brake mean effective pressure 制动平均有效压力以评估发动机的效率。
4.The brake mean effective pressure 制动平均有效压力 is crucial for determining the power output of an engine.
对于确定发动机的功率输出,brake mean effective pressure 制动平均有效压力至关重要。
5.The engine's performance can be evaluated by measuring the brake mean effective pressure 制动平均有效压力 during testing.
通过在测试期间测量brake mean effective pressure 制动平均有效压力,可以评估发动机的性能。
作文
In the field of engineering, particularly in thermodynamics and mechanical engineering, the term brake mean effective pressure (BMEP) plays a crucial role in evaluating the performance of an engine. Understanding this concept is essential for engineers and technicians who work with internal combustion engines. The brake mean effective pressure is defined as the average pressure in the combustion chamber that contributes to the engine's output power during one complete cycle of operation. It is a vital parameter because it directly relates to the efficiency and power output of an engine. To better grasp the significance of brake mean effective pressure, we can compare it to other performance metrics. For instance, while horsepower measures the rate at which work is done, BMEP provides insight into how effectively an engine converts fuel into usable energy. Higher values of BMEP indicate that an engine is producing more power from the same amount of fuel, which is a desirable trait in automotive design. The calculation of brake mean effective pressure involves several factors, including engine displacement, engine speed, and brake horsepower. Engineers use the formula: BMEP = (2 × π × Brake Horsepower × 33,000) / Engine Displacement. This equation highlights the relationship between the engine's physical dimensions and its performance capabilities. By analyzing BMEP, engineers can make informed decisions about engine design, tuning, and optimization.Furthermore, understanding brake mean effective pressure is not only limited to performance evaluation but also extends to emissions and fuel economy. Engines that operate with higher BMEP tend to be more efficient, leading to lower fuel consumption and reduced emissions. This is particularly important in today’s automotive industry, where environmental regulations are becoming increasingly stringent. Manufacturers strive to develop engines that not only provide high performance but also meet these regulatory standards. In practical applications, mechanics and engineers often monitor BMEP during testing phases of engine development. By assessing how changes in design or fuel type affect brake mean effective pressure, they can refine their products to achieve optimal performance. This iterative process is crucial in the competitive automotive market, where consumers demand both power and efficiency. In conclusion, the concept of brake mean effective pressure is integral to understanding engine performance. It serves as a benchmark for evaluating how effectively an engine converts fuel into power while considering efficiency and environmental impact. As technology advances, the importance of BMEP will continue to grow, guiding the future of engine design and development. Engineers must remain vigilant in their understanding of this metric to ensure that they can create engines that meet the demands of modern society while maintaining high performance standards.
在工程领域,特别是在热力学和机械工程中,术语制动平均有效压力(BMEP)在评估发动机性能方面起着至关重要的作用。理解这一概念对从事内燃机工作的工程师和技术人员至关重要。制动平均有效压力被定义为在一个完整的工作周期内,燃烧室内有助于发动机输出功率的平均压力。它是一个重要参数,因为它直接与发动机的效率和功率输出相关。为了更好地理解制动平均有效压力的重要性,我们可以将其与其他性能指标进行比较。例如,尽管马力衡量的是做功的速率,但BMEP提供了关于发动机如何有效地将燃料转化为可用能量的洞察。更高的BMEP值表明,发动机在相同的燃料量下产生了更多的功率,这是汽车设计中一种理想的特征。制动平均有效压力的计算涉及多个因素,包括发动机排量、发动机转速和制动马力。工程师使用公式:BMEP = (2 × π × 制动马力 × 33,000) / 发动机排量。这个方程突显了发动机的物理尺寸与其性能能力之间的关系。通过分析BMEP,工程师可以对发动机设计、调校和优化做出明智的决定。此外,理解制动平均有效压力不仅限于性能评估,还扩展到排放和燃油经济性。运行在较高BMEP下的发动机往往更高效,从而导致较低的燃料消耗和减少的排放。这在当今的汽车工业中尤为重要,因为环境法规变得越来越严格。制造商努力开发不仅提供高性能而且符合这些监管标准的发动机。在实际应用中,机械师和工程师通常在发动机开发的测试阶段监测BMEP。通过评估设计或燃料类型的变化如何影响制动平均有效压力,他们可以优化产品以实现最佳性能。这一迭代过程在竞争激烈的汽车市场中至关重要,消费者对动力和效率的需求不断增加。总之,制动平均有效压力的概念对于理解发动机性能至关重要。它作为评估发动机如何将燃料转化为功率的基准,同时考虑效率和环境影响。随着技术的进步,BMEP的重要性将继续增长,引导发动机设计和发展的未来。工程师必须保持对这一指标的敏感性,以确保他们能够制造出满足现代社会需求的同时保持高性能标准的发动机。
相关单词