creep function

简明释义

蠕变功能

英英释义

A creep function is a mathematical representation of how a material deforms over time under a constant load, typically characterized by a gradual increase in strain.

蠕变函数是对材料在恒定负载下随时间变形的数学表示,通常以应变的逐渐增加为特征。

例句

1.The developer implemented a creep function 爬升功能 to ensure smoother transitions between scenes in the game.

开发者实施了一个creep function 爬升功能,以确保游戏中场景之间的过渡更加平滑。

2.In our engineering project, we need to account for the creep function 爬升功能 when designing the materials.

在我们的工程项目中,我们需要在设计材料时考虑到creep function 爬升功能

3.Understanding the creep function 爬升功能 is essential for predicting long-term performance in construction.

理解creep function 爬升功能对于预测建筑的长期性能至关重要。

4.The creep function 爬升功能 in this machine allows it to gradually increase its speed without sudden jerks.

这台机器中的creep function 爬升功能使其能够逐渐提高速度,而不会突然抖动。

5.The new software update improved the creep function 爬升功能 of the application, allowing it to adapt better over time.

新的软件更新改善了应用程序的creep function 爬升功能,使其能够随着时间更好地适应。

作文

In the realm of engineering and materials science, understanding various mechanical properties is crucial for predicting how materials will behave under different conditions. One such property that engineers must consider is the creep function, which describes the tendency of a material to deform permanently under the influence of constant stress over time. This phenomenon is particularly important in high-temperature applications, where materials are subjected to prolonged stress and may not return to their original shape after the load is removed.The creep function can be illustrated through the example of metals used in aerospace applications. When these metals are exposed to high temperatures and sustained loads, they can slowly change shape, leading to potential failures in structural integrity. This gradual deformation is not instantaneous; instead, it occurs over an extended period, making it essential for engineers to account for it in their designs.To better understand the creep function, we can break it down into three distinct stages: primary, secondary, and tertiary creep. In the primary stage, the rate of creep decreases over time as the material undergoes work hardening. During the secondary stage, the creep rate becomes relatively constant, indicating a steady state of deformation. Finally, in the tertiary stage, the rate of creep accelerates until the material ultimately fails. This progression highlights the importance of monitoring and analyzing the creep function to prevent catastrophic failures in engineering structures.Moreover, the creep function is not limited to metals; polymers and ceramics also exhibit creep behavior, albeit in different forms. For instance, polymers tend to show significant creep at room temperature, especially when subjected to long-term loading. Understanding how these materials respond to stress over time is vital for applications ranging from consumer products to industrial components.In practical terms, engineers utilize the creep function to determine safe operating limits for materials. By conducting creep tests, they can gather data on how a material behaves under specific conditions, enabling them to make informed decisions about material selection and design parameters. This proactive approach helps to mitigate risks associated with creep-related failures.In conclusion, the creep function is a fundamental concept in materials science and engineering that describes the time-dependent deformation of materials under constant stress. Its implications are far-reaching, influencing the design and safety of various structures and components. By comprehensively understanding the creep function, engineers can enhance the reliability and longevity of their products, ensuring they perform effectively under challenging conditions. As technology advances and new materials are developed, the study of the creep function will remain a critical area of research, helping to push the boundaries of what is possible in engineering and design.

在工程和材料科学领域,理解各种机械性能对于预测材料在不同条件下的行为至关重要。其中一个工程师必须考虑的特性是蠕变函数,它描述了材料在持续应力影响下随时间永久变形的倾向。这种现象在高温应用中尤为重要,因为材料可能会在长时间的应力作用下无法恢复到原始形状。蠕变函数可以通过航空航天应用中使用的金属示例来说明。当这些金属暴露于高温和持续负载时,它们可能会缓慢改变形状,从而导致结构完整性潜在的故障。这种逐渐的变形不是瞬时发生的;相反,它是在较长的时间内发生的,这使得工程师在设计中考虑这一点变得至关重要。为了更好地理解蠕变函数,我们可以将其分为三个不同的阶段:初级、次级和三级蠕变。在初级阶段,蠕变速率随着时间的推移而降低,因为材料经历了加工硬化。在次级阶段,蠕变速率相对恒定,表明变形处于稳态。最后,在三级阶段,蠕变速率加速,直到材料最终失效。这一进程突显了监测和分析蠕变函数的重要性,以防止工程结构中的灾难性故障。此外,蠕变函数并不仅限于金属;聚合物和陶瓷也表现出蠕变行为,尽管形式不同。例如,聚合物在室温下表现出显著的蠕变,尤其是在长期负载下。了解这些材料在应力作用下随时间的反应对于从消费产品到工业组件的应用至关重要。在实际应用中,工程师利用蠕变函数来确定材料的安全操作极限。通过进行蠕变测试,他们可以收集材料在特定条件下的行为数据,从而使他们能够就材料选择和设计参数做出明智的决策。这种主动的方法有助于减轻与蠕变相关的故障风险。总之,蠕变函数是材料科学和工程中的一个基本概念,描述了材料在恒定应力下的时间依赖性变形。它的影响广泛,影响着各种结构和组件的设计和安全。通过全面理解蠕变函数,工程师可以增强其产品的可靠性和耐用性,确保它们在挑战性条件下有效运行。随着技术的进步和新材料的开发,蠕变函数的研究将继续是一个关键领域,帮助推动工程和设计中可能性的边界。

相关单词

creep

creep详解:怎么读、什么意思、用法