nonrelativistic

简明释义

[ˌnɒnˌrelətɪˈvɪstɪk][ˈnɑːnrelətɪˈvɪstɪk]

adj. 非相对论性的

英英释义

Relating to or denoting a physical theory that does not take into account the effects of relativity, typically applicable at speeds much less than the speed of light.

与不考虑相对论效应的物理理论相关或表示,通常适用于远低于光速的速度。

单词用法

nonrelativistic mechanics

非相对论力学

nonrelativistic quantum mechanics

非相对论量子力学

nonrelativistic particles

非相对论粒子

in a nonrelativistic framework

在非相对论框架内

applying nonrelativistic principles

应用非相对论原理

nonrelativistic equations of motion

非相对论运动方程

同义词

classical

经典的

In classical mechanics, objects are treated as nonrelativistic unless they approach the speed of light.

在经典力学中,物体被视为非相对论的,除非它们接近光速。

non-relativistic

非相对论的

The equations of motion in non-relativistic physics differ significantly from those in relativistic physics.

非相对论物理中的运动方程与相对论物理中的方程有显著不同。

absolute

绝对的

In many engineering applications, nonrelativistic approximations are sufficient for accurate results.

在许多工程应用中,非相对论近似足以获得准确结果。

反义词

relativistic

相对论的

Relativistic effects become significant at speeds close to the speed of light.

在接近光速的情况下,相对论效应变得显著。

quantum

量子

In quantum mechanics, particles exhibit behaviors that cannot be explained by classical physics.

在量子力学中,粒子的行为无法用经典物理解释。

例句

1.This means that there is a conceptual inaccuracy in the nonrelativistic concept of a black hole as originally proposed by John Michell in 1783.

这意味着有一个黑洞概念上的错误如1783年被约翰·米切尔提议的那样。

2.An approximate relationship is applied to calculate nonrelativistic total electronic energies of atomic open shell systems.

本文将闭壳层体系的近似关系式,应用于计算原子开壳层体系非相对论的总电子能量。

3.A novel relative dynamics equation of the elastic rotation shaft possessed twain side is built in the nonrelativistic theory in this paper.

在非相对论性原理下建立了二端面弹性转轴的动力学方程。

4.Energy is injected into space by quasars in the form of fast, nonrelativistic particles.

能量是以快速非相对论性粒子的形式由类星体注入空间的。

5.This means that there is a conceptual inaccuracy in the nonrelativistic concept of a black hole as originally proposed by John Michell in 1783.

这意味着有一个黑洞概念上的错误如1783年被约翰·米切尔提议的那样。

6.The nonrelativistic 非相对论的 limit of quantum mechanics simplifies many calculations.

量子力学的非相对论的极限简化了许多计算。

7.In a nonrelativistic 非相对论的 framework, gravity acts instantaneously.

非相对论的框架中,重力是瞬时作用的。

8.For small velocities, the nonrelativistic 非相对论的 kinetic energy formula can be used.

对于小速度,可以使用非相对论的动能公式。

9.The nonrelativistic 非相对论的 approximation is valid when the speeds are much less than the speed of light.

当速度远小于光速时,非相对论的近似是有效的。

10.In classical mechanics, we often deal with nonrelativistic 非相对论的 equations of motion.

在经典力学中,我们常常处理非相对论的运动方程。

作文

In the realm of physics, understanding the different frameworks that govern the behavior of objects in motion is crucial. One important concept that often arises is that of nonrelativistic motion. To grasp what this term means, we must first delve into the principles of classical mechanics, which describe the motion of objects at speeds much lower than the speed of light. In a nonrelativistic context, the effects of relativity, as proposed by Einstein, are negligible and can be ignored. This allows for simpler calculations and predictions about the motion of everyday objects.For instance, when a car accelerates from a stoplight, its speed is far below the speed of light, making it a perfect example of nonrelativistic motion. The equations governing this type of motion, such as Newton's laws, provide accurate results without the need to incorporate relativistic effects. In a nonrelativistic framework, we can easily calculate the distance traveled by the car over a certain period, as well as its acceleration and velocity.However, as speeds approach the speed of light, the assumptions underlying nonrelativistic physics begin to break down. At these high velocities, objects experience significant relativistic effects, such as time dilation and length contraction. This is where Einstein’s theory of relativity comes into play, providing a new set of equations to describe motion in a relativistic context. For example, it becomes necessary to account for the increased mass of an object as it approaches the speed of light, which is something that nonrelativistic physics cannot address.The distinction between nonrelativistic and relativistic motion is not just a matter of theoretical interest; it has practical implications in various fields, including engineering and astrophysics. Engineers often design vehicles and structures based on nonrelativistic principles, ensuring safety and efficiency under normal operating conditions. However, when dealing with high-speed particles in accelerators or understanding cosmic phenomena, scientists must rely on relativistic physics to make accurate predictions.Moreover, the concept of nonrelativistic motion also plays a role in our daily lives. For example, when playing sports, athletes operate within a nonrelativistic framework as they run, jump, and throw. The principles of motion they rely on are derived from classical mechanics, allowing them to optimize their performance without needing to consider relativistic effects.In conclusion, the term nonrelativistic refers to a framework of physics that applies to objects moving at speeds significantly lower than the speed of light. This framework simplifies the analysis of motion, making it easier to understand and predict the behavior of everyday objects. While nonrelativistic physics is incredibly useful, it is essential to recognize its limitations, especially as we encounter scenarios involving high velocities. By appreciating the differences between nonrelativistic and relativistic motion, we can gain a deeper understanding of the physical world around us, enhancing both our scientific knowledge and practical applications in technology and sports.

在物理学领域,理解支配物体运动行为的不同框架至关重要。一个经常出现的重要概念是非相对论性运动。要掌握这个术语的含义,我们必须首先深入经典力学的原则,经典力学描述了低于光速的物体运动。在非相对论性的背景下,相对论的影响被认为是微不足道的,可以被忽略。这使得日常物体的运动计算和预测变得更加简单。例如,当一辆汽车从红绿灯处加速时,它的速度远低于光速,这使其成为非相对论性运动的完美例子。支配这种类型运动的方程,例如牛顿定律,提供了准确的结果,而无需考虑相对论效应。在非相对论性框架中,我们可以轻松计算汽车在一定时间内行驶的距离,以及它的加速度和速度。然而,随着速度接近光速,支撑非相对论性物理学的假设开始崩溃。在这些高速度下,物体会经历显著的相对论效应,例如时间膨胀和长度收缩。这时,爱因斯坦的相对论理论便发挥作用,提供了一套新的方程来描述相对论性背景下的运动。例如,当物体接近光速时,必须考虑物体质量的增加,而这正是非相对论性物理学无法解决的问题。非相对论性运动与相对论性运动之间的区别不仅是理论上的兴趣;它在工程和天体物理等多个领域也具有实际意义。工程师们通常基于非相对论性原理设计车辆和结构,以确保在正常操作条件下的安全性和效率。然而,在处理加速器中的高速粒子或理解宇宙现象时,科学家们必须依赖相对论物理学来做出准确的预测。此外,非相对论性运动的概念也在我们的日常生活中发挥着作用。例如,当运动员在运动时,他们在跑步、跳跃和投掷时都处于非相对论性框架之内。他们所依赖的运动原则源自经典力学,使他们能够优化表现,而不需要考虑相对论效应。总之,术语非相对论性指的是适用于速度远低于光速的物体的物理学框架。这个框架简化了运动分析,使我们更容易理解和预测日常物体的行为。尽管非相对论性物理学非常有用,但重要的是认识到它的局限性,尤其是在我们遇到高速度场景时。通过欣赏非相对论性与相对论性运动之间的差异,我们可以更深入地理解周围的物理世界,增强我们在科技和运动中的科学知识和实际应用。