binary-coded decimal
简明释义
二-十进制计数法
英英释义
A binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by its own binary sequence. | 二进制编码十进制(BCD)是一种将十进制数字编码为二进制的方式,其中每个数字由其对应的二进制序列表示。 |
例句
1.Many embedded systems utilize binary-coded decimal 二进制编码十进制 to simplify arithmetic operations.
许多嵌入式系统利用二进制编码十进制 binary-coded decimal 来简化算术运算。
2.When programming microcontrollers, you may need to convert values to binary-coded decimal 二进制编码十进制 for display purposes.
在编程微控制器时,您可能需要将值转换为二进制编码十进制 binary-coded decimal 以供显示。
3.In digital clocks, time is often represented using binary-coded decimal 二进制编码十进制 for easy reading.
在数字时钟中,时间通常使用二进制编码十进制 binary-coded decimal 表示,以便于阅读。
4.The binary-coded decimal 二进制编码十进制 format is essential in financial calculations where precision is crucial.
在金融计算中,二进制编码十进制 binary-coded decimal 格式是至关重要的,因为精度非常重要。
5.The calculator uses binary-coded decimal 二进制编码十进制 to display numbers accurately.
计算器使用二进制编码十进制 binary-coded decimal 来准确显示数字。
作文
In the realm of computing and digital electronics, understanding various number systems is essential for both programmers and engineers. One such system that plays a crucial role in the representation of decimal numbers in binary form is known as binary-coded decimal. This encoding method allows for the precise representation of decimal digits using binary numbers, making it particularly useful in applications where accuracy is paramount, such as in financial calculations and digital displays.The concept of binary-coded decimal can be traced back to the early days of computing when engineers sought ways to represent decimal numbers in a format that computers could easily process. Unlike traditional binary representation, which uses powers of two to express values, binary-coded decimal encodes each decimal digit separately in its binary equivalent. For example, the decimal number 45 would be represented in binary-coded decimal as 0100 0101, where '4' is represented as 0100 and '5' as 0101.One of the significant advantages of using binary-coded decimal is its alignment with human understanding of decimal numbers. This makes it easier for programmers to work with numerical data without the need for complex conversions between binary and decimal formats. In industries such as banking and finance, where precision is critical, binary-coded decimal ensures that calculations are performed accurately, reducing the risk of errors that may arise from rounding issues present in floating-point representations.However, binary-coded decimal is not without its drawbacks. One of the main criticisms is its inefficiency in terms of storage and processing speed. Since each decimal digit requires a fixed number of bits (usually four), binary-coded decimal tends to consume more memory compared to pure binary representations. For instance, a two-digit decimal number would require eight bits in binary-coded decimal, while it could be represented in just seven bits in standard binary form. This inefficiency can become problematic in applications where memory is limited or where performance is critical.Despite these challenges, binary-coded decimal remains a popular choice in specific applications. For instance, many digital clocks and calculators utilize this encoding method to display time and numerical values accurately. Additionally, certain programming languages and hardware platforms provide built-in support for binary-coded decimal, allowing developers to leverage its advantages without needing to implement custom solutions.In conclusion, the binary-coded decimal system is a vital part of the computing landscape, bridging the gap between human-readable decimal numbers and machine-friendly binary formats. Its ability to represent decimal digits accurately makes it indispensable in fields where precision is crucial. While it may have some limitations regarding efficiency, its benefits often outweigh these drawbacks in applications that prioritize accuracy over performance. As technology continues to evolve, understanding binary-coded decimal will remain essential for anyone working in the fields of computing and digital electronics.
在计算机和数字电子学的领域,理解各种数字系统对程序员和工程师至关重要。一个在二进制形式中表示十进制数字的重要系统被称为二进制编码十进制。这种编码方法允许精确地使用二进制数字表示十进制数字,使其在需要高准确度的应用中尤为有用,例如金融计算和数字显示。二进制编码十进制的概念可以追溯到计算机早期,当时工程师们寻求将十进制数字以计算机易于处理的格式表示。与传统的二进制表示法不同,后者使用二的幂来表达值,二进制编码十进制将每个十进制数字单独编码为其二进制等价物。例如,十进制数字45在二进制编码十进制中表示为0100 0101,其中'4'表示为0100,而'5'表示为0101。使用二进制编码十进制的一个显著优点是它与人类对十进制数字的理解相一致。这使得程序员在处理数值数据时更容易,而无需进行复杂的二进制和十进制格式之间的转换。在银行和金融等行业中,由于精度至关重要,二进制编码十进制确保计算的准确性,减少了由于浮点表示中的舍入问题而可能出现的错误风险。然而,二进制编码十进制并非没有缺点。主要的批评之一是其在存储和处理速度方面的低效。由于每个十进制数字需要固定数量的位(通常为四位),二进制编码十进制往往比纯二进制表示消耗更多的内存。例如,一个两位的十进制数字在二进制编码十进制中需要八个位,而在标准二进制形式中只需七个位。这种低效在内存有限或性能关键的应用中可能成为问题。尽管面临这些挑战,二进制编码十进制仍然在特定应用中广受欢迎。例如,许多数字时钟和计算器利用这种编码方法准确显示时间和数值。此外,某些编程语言和硬件平台提供对二进制编码十进制的内置支持,使开发人员能够利用其优势,而无需实现自定义解决方案。总之,二进制编码十进制系统是计算机领域的重要组成部分,弥合了人类可读的十进制数字与机器友好的二进制格式之间的差距。它精确表示十进制数字的能力使其在精度至关重要的领域不可或缺。尽管在效率方面可能存在一些限制,但在优先考虑准确性的应用中,其优势通常超过了这些缺点。随着技术的不断发展,理解二进制编码十进制将继续是任何在计算机和数字电子领域工作的人所必需的。