binary-coded decimal
简明释义
二-十进制计数法
英英释义
A method of representing decimal numbers in which each digit is encoded as a separate binary value. | 一种表示十进制数字的方法,其中每个数字作为单独的二进制值进行编码。 |
例句
1.The ATM machine displays the amount in binary-coded decimal 二进制编码十进制 format for user clarity.
ATM机以二进制编码十进制 binary-coded decimal格式显示金额,以便用户清晰了解。
2.In data processing, binary-coded decimal 二进制编码十进制 allows for easier conversion between binary and decimal systems.
在数据处理过程中,二进制编码十进制 binary-coded decimal便于在二进制和十进制系统之间进行转换。
3.When programming microcontrollers, understanding binary-coded decimal 二进制编码十进制 is essential for handling numerical data.
在编程微控制器时,理解二进制编码十进制 binary-coded decimal对于处理数值数据至关重要。
4.Many calculators internally use binary-coded decimal 二进制编码十进制 for performing arithmetic operations.
许多计算器内部使用二进制编码十进制 binary-coded decimal来执行算术运算。
5.The digital clock uses binary-coded decimal 二进制编码十进制 to display the time accurately.
数字时钟使用二进制编码十进制 binary-coded decimal来准确显示时间。
作文
In the world of computing and digital electronics, data representation is crucial for ensuring accurate processing and communication. One of the significant methods of representing numerical values in a digital format is through the use of binary-coded decimal (BCD). This system allows for the encoding of decimal numbers in a binary format, making it easier for computers to perform arithmetic operations while maintaining human readability.The binary-coded decimal system encodes each digit of a decimal number separately into its binary equivalent. For example, the decimal number '45' would be represented in BCD as '0100 0101', where '0100' corresponds to the decimal digit '4' and '0101' corresponds to the decimal digit '5'. This method stands in contrast to other binary representations, such as pure binary, where the entire number is converted into a single binary sequence.One of the primary advantages of using binary-coded decimal is its simplicity when it comes to displaying numbers. Since each decimal digit is encoded separately, it becomes straightforward to convert between human-readable decimal formats and machine-readable binary formats. This characteristic is particularly beneficial in applications where precision is crucial, such as in financial calculations or digital clocks. In these scenarios, any rounding errors that might occur with pure binary representations can lead to significant discrepancies, making BCD a more reliable choice.However, binary-coded decimal is not without its drawbacks. One major limitation is that it requires more storage space compared to pure binary representations. Each decimal digit takes up four bits in BCD, which can lead to inefficient use of memory when dealing with large numbers. For instance, representing the decimal number '9999' in BCD requires 16 bits, whereas in pure binary, it only requires 14 bits. This inefficiency can be a concern in systems where memory is limited or where performance is critical.Despite these challenges, binary-coded decimal remains widely used in various applications. Many digital devices, such as calculators and digital watches, utilize BCD due to its ease of conversion and ability to minimize errors in decimal calculations. Additionally, BCD is also employed in certain communication protocols and data formats where precise numeric representation is essential.As technology continues to evolve, the relevance of binary-coded decimal remains significant. With the increasing reliance on digital systems in everyday life, understanding how BCD works and its applications can enhance our comprehension of how machines process information. Moreover, as we develop more sophisticated algorithms and hardware, the balance between efficiency and accuracy will continue to shape the use of different data representation methods, including BCD.In conclusion, binary-coded decimal is an essential concept in the realm of computing that bridges the gap between human-readable numbers and machine-readable formats. Its unique approach to encoding decimal digits separately provides both advantages and challenges, making it a valuable tool in various applications. As we navigate the complexities of digital technology, a solid understanding of BCD will undoubtedly contribute to our ability to work effectively with numerical data in a digital environment.
在计算机和数字电子的世界中,数据表示对于确保准确处理和通信至关重要。以数字格式表示数值的一种重要方法是通过使用二进制编码十进制(BCD)。该系统允许将十进制数字编码为二进制格式,使计算机更容易进行算术运算,同时保持人类可读性。二进制编码十进制系统将十进制数字的每一位单独编码为其二进制等效值。例如,十进制数字“45”将在BCD中表示为“0100 0101”,其中“0100”对应于十进制数字“4”,“0101”对应于十进制数字“5”。这种方法与其他二进制表示(如纯二进制)形成对比,在纯二进制中,整个数字被转换为单个二进制序列。使用二进制编码十进制的主要优点之一是它在显示数字时的简单性。由于每个十进制数字单独编码,因此在可读的十进制格式和机器可读的二进制格式之间进行转换变得简单。这一特性在精度至关重要的应用中尤其有利,例如金融计算或数字时钟。在这些情况下,纯二进制表示可能产生的任何舍入误差都可能导致重大差异,从而使BCD成为更可靠的选择。然而,二进制编码十进制并非没有缺点。一个主要限制是,与纯二进制表示相比,它需要更多的存储空间。BCD中每个十进制数字占用四个位,这在处理大数字时可能导致内存使用效率低下。例如,在BCD中表示十进制数字“9999”需要16位,而在纯二进制中仅需14位。这种低效在内存有限或性能至关重要的系统中可能是一个问题。尽管面临这些挑战,二进制编码十进制仍在各种应用中得到广泛使用。许多数字设备,如计算器和数字手表,由于其易于转换和能够最小化十进制计算中的错误而利用BCD。此外,BCD还用于某些通信协议和数据格式,在这些场合中,精确的数字表示至关重要。随着技术的不断发展,二进制编码十进制的相关性仍然显著。随着我们日常生活中对数字系统的依赖增加,理解BCD的工作原理及其应用可以增强我们对机器如何处理信息的理解。此外,随着我们开发出更复杂的算法和硬件,效率与准确性之间的平衡将继续影响不同数据表示方法的使用,包括BCD。总之,二进制编码十进制是在计算领域中的一个重要概念,它弥合了人类可读数字和机器可读格式之间的差距。它以独特的方式将十进制数字单独编码,提供了优点和挑战,使其成为各种应用中的宝贵工具。随着我们在数字技术的复杂性中前行,深入理解BCD无疑将有助于我们在数字环境中有效处理数值数据的能力。