atomic scatterring

简明释义

核扩散

英英释义

Atomic scattering refers to the process by which particles (such as photons, electrons, or neutrons) deviate from a straight trajectory due to interactions with atoms in a material.

原子散射是指粒子(如光子、电子或中子)因与材料中的原子相互作用而偏离直线路径的过程。

例句

1.The technique of atomic scattering is essential for developing new materials.

这项原子散射技术对于开发新材料至关重要。

2.The researchers used atomic scattering to analyze the material's properties at a microscopic level.

研究人员使用原子散射来分析材料在微观层面的性质。

3.In physics, atomic scattering plays a crucial role in understanding particle interactions.

在物理学中,原子散射在理解粒子相互作用中起着至关重要的作用。

4.Using atomic scattering, scientists can determine the arrangement of atoms in a crystal.

科学家可以利用原子散射确定晶体中原子的排列。

5.The experiment demonstrated how atomic scattering can reveal the structure of complex molecules.

实验演示了如何通过原子散射揭示复杂分子的结构。

作文

In the field of physics, particularly in the study of atomic and molecular interactions, the concept of atomic scattering plays a crucial role. Atomic scattering refers to the process by which particles, such as photons or electrons, are deflected by atoms when they interact with them. This phenomenon is essential for understanding various physical properties of materials, including their structure, composition, and behavior under different conditions.To grasp the significance of atomic scattering, we must first consider how it occurs at the microscopic level. When a beam of particles collides with a target material, the particles can be absorbed, transmitted, or scattered. The scattering can be elastic, where the kinetic energy of the incoming particle remains unchanged, or inelastic, where some energy is transferred to the atom, resulting in a change in energy state. This interaction provides valuable information about the atomic arrangement and bonding within the material.One practical application of atomic scattering is found in the field of materials science. Scientists utilize techniques such as neutron scattering and X-ray scattering to investigate the properties of various materials. For instance, by analyzing the scattering patterns produced when neutrons collide with a sample, researchers can determine the arrangement of atoms within that sample. This information is crucial for developing new materials with specific properties, such as increased strength or improved conductivity.Moreover, atomic scattering is not limited to solid materials; it also plays a significant role in understanding gases and liquids. In these states of matter, the interactions between atoms or molecules can lead to various scattering phenomena. For example, in gas-phase studies, atomic scattering helps scientists understand reaction dynamics and how molecules interact during chemical reactions. This knowledge is vital for fields such as atmospheric science and chemical engineering.In addition to its applications in materials science and chemistry, atomic scattering also has implications in medical imaging and radiation therapy. Techniques like positron emission tomography (PET) rely on the principles of scattering to create detailed images of the body's internal structures. By understanding how particles scatter within the body, medical professionals can obtain accurate diagnostic information and tailor treatments more effectively.In conclusion, the concept of atomic scattering is fundamental to various scientific disciplines. Its ability to reveal insights into atomic interactions and material properties makes it an invaluable tool in research and industry. As technology advances, the methods used to study atomic scattering will continue to evolve, leading to new discoveries and applications that can benefit society as a whole. Understanding this phenomenon not only enhances our knowledge of the physical world but also opens up new avenues for innovation in science and technology.

在物理学领域,特别是在原子和分子相互作用的研究中,原子散射的概念起着至关重要的作用。原子散射指的是粒子(如光子或电子)与原子相互作用时被偏转的过程。这种现象对于理解材料的各种物理性质,包括其结构、成分以及在不同条件下的行为至关重要。要理解原子散射的重要性,我们必须首先考虑它在微观层面上是如何发生的。当一束粒子与目标材料碰撞时,这些粒子可以被吸收、透射或散射。散射可以是弹性的,其中入射粒子的动能保持不变;也可以是非弹性的,其中一些能量转移给原子,导致能量状态的变化。这种相互作用提供了关于材料内部原子排列和键合的宝贵信息。原子散射的一个实际应用可以在材料科学领域找到。科学家利用中子散射和X射线散射等技术来研究各种材料的性质。例如,通过分析中子与样品碰撞后产生的散射模式,研究人员可以确定该样品内原子的排列。这些信息对于开发具有特定性能的新材料(例如增强强度或改善导电性)至关重要。此外,原子散射不仅限于固体材料;它在理解气体和液体方面也起着重要作用。在这些物态中,原子或分子之间的相互作用可能导致各种散射现象。例如,在气相研究中,原子散射帮助科学家理解反应动力学以及分子在化学反应中的相互作用。这一知识对于大气科学和化学工程等领域至关重要。除了在材料科学和化学中的应用外,原子散射在医学成像和放射治疗中也有影响。正电子发射断层扫描(PET)等技术依赖于散射原理来创建身体内部结构的详细图像。通过了解粒子在体内的散射方式,医疗专业人员可以获得准确的诊断信息,并更有效地调整治疗方案。总之,原子散射的概念对多个科学学科至关重要。它揭示原子相互作用和材料性质的能力使其成为研究和工业中不可或缺的工具。随着技术的进步,用于研究原子散射的方法将继续演变,从而导致新的发现和应用,造福整个社会。理解这一现象不仅增强了我们对物理世界的认识,还为科学和技术的创新开辟了新的途径。

相关单词

atomic

atomic详解:怎么读、什么意思、用法