atomic fusion

简明释义

核聚变

英英释义

Atomic fusion is the process in which two or more atomic nuclei combine to form a heavier nucleus, releasing a significant amount of energy in the process.

原子聚变是两个或多个原子核结合形成更重的原子核的过程,在此过程中释放出大量能量。

例句

1.The sun's core is a natural reactor where atomic fusion 原子聚变 occurs continuously.

太阳的核心是一个天然反应堆,原子聚变持续发生。

2.The process of atomic fusion 原子聚变 is essential for the energy production in stars.

原子聚变的过程对恒星中的能量产生至关重要。

3.Scientists are researching atomic fusion 原子聚变 as a potential source of clean energy on Earth.

科学家正在研究原子聚变作为地球上潜在的清洁能源。

4.During atomic fusion 原子聚变, lighter nuclei combine to form heavier nuclei, releasing vast amounts of energy.

在原子聚变过程中,较轻的原子核结合形成较重的原子核,释放出大量能量。

5.Researchers hope to achieve controlled atomic fusion 原子聚变 for sustainable energy solutions.

研究人员希望实现受控的原子聚变,以寻找可持续的能源解决方案。

作文

Atomic fusion, a process that powers the stars and holds the potential for clean energy on Earth, is a fascinating subject that combines elements of physics, chemistry, and engineering. In simple terms, atomic fusion (原子融合) occurs when two light atomic nuclei combine to form a heavier nucleus, releasing an immense amount of energy in the process. This phenomenon is the opposite of nuclear fission, where heavy nuclei split into lighter ones. Understanding atomic fusion (原子融合) not only helps us comprehend the workings of the universe but also paves the way for advancements in energy production.The sun, our closest star, is a perfect example of atomic fusion (原子融合) at work. Within its core, hydrogen atoms fuse to create helium, a process that generates the light and heat essential for life on Earth. The energy released during atomic fusion (原子融合) is what makes the sun shine and provides warmth to our planet. Scientists have long sought to replicate this process on Earth, aiming to harness its power for sustainable energy solutions.One of the most significant advantages of atomic fusion (原子融合) is its potential to provide a nearly limitless source of energy. Unlike fossil fuels, which are finite and contribute to environmental pollution, the fuel for fusion—primarily isotopes of hydrogen such as deuterium and tritium—is abundant and can be extracted from water and lithium. Furthermore, the byproducts of atomic fusion (原子融合) are far less harmful compared to those produced by fission or fossil fuel combustion. This makes it an attractive option for addressing the global energy crisis and combating climate change.However, achieving controlled atomic fusion (原子融合) on Earth has proven to be a monumental challenge. The conditions required for fusion—extreme temperatures and pressures—are difficult to replicate. Scientists must create a plasma state where the atomic nuclei can overcome their natural repulsion due to positive charges. Various experimental reactors, such as tokamaks and inertial confinement facilities, are being developed to explore different methods of achieving this goal.Recent advancements in technology have brought us closer to realizing practical atomic fusion (原子融合). For instance, projects like ITER (International Thermonuclear Experimental Reactor) aim to demonstrate the feasibility of fusion as a large-scale and carbon-free source of energy. If successful, such initiatives could revolutionize the energy sector, providing a cleaner and more sustainable alternative to current energy sources.In conclusion, atomic fusion (原子融合) represents both a scientific marvel and a potential solution to some of the world's most pressing challenges. As researchers continue to unlock the secrets of this powerful process, we may soon see a future where clean, abundant energy is a reality. The journey toward harnessing atomic fusion (原子融合) is not without its hurdles, but the promise it holds for humanity is too significant to ignore. By investing in research and development in this field, we can pave the way for a brighter, more sustainable future for generations to come.

原子融合是一种驱动恒星并具有在地球上提供清洁能源潜力的过程,这是一个结合了物理、化学和工程元素的迷人主题。简单来说,atomic fusion(原子融合)发生在两个轻原子核结合形成一个更重的原子核的过程中,同时释放出巨大的能量。这种现象与核裂变相反,后者是重原子核分裂成较轻的原子核。理解atomic fusion(原子融合)不仅有助于我们理解宇宙的运作,还为能源生产的进步铺平了道路。太阳,我们最近的恒星,是atomic fusion(原子融合)运作的完美例子。在其核心,氢原子融合形成氦,这个过程产生了对地球生命至关重要的光和热。atomic fusion(原子融合)过程中释放的能量使太阳发光,并为我们的星球提供温暖。科学家们长期以来一直试图在地球上复制这一过程,旨在利用它的力量来实现可持续的能源解决方案。atomic fusion(原子融合)的一个显著优势是它提供几乎无限的能源来源的潜力。与有限且对环境造成污染的化石燃料不同,融合的燃料——主要是氢的同位素,如氘和氚——是丰富的,可以从水和锂中提取。此外,atomic fusion(原子融合)的副产品远不如裂变或化石燃料燃烧产生的有害。这使得它成为应对全球能源危机和气候变化的有吸引力的选择。然而,在地球上实现受控的atomic fusion(原子融合)被证明是一项巨大的挑战。实现融合所需的条件——极端的温度和压力——很难复制。科学家们必须创造一种等离子体状态,使原子核能够克服由于正电荷引起的自然排斥。各种实验反应堆,如托卡马克和惯性约束设施,正在开发中,以探索实现这一目标的不同方法。近年来,技术的进步使我们更接近实现实用的atomic fusion(原子融合)。例如,国际热核聚变实验堆(ITER)等项目旨在展示聚变作为大规模和无碳能源来源的可行性。如果成功,这类倡议可能会彻底改变能源行业,为当前能源来源提供更清洁、更可持续的替代方案。总之,atomic fusion(原子融合)代表了科学的奇迹和解决世界一些最紧迫挑战的潜在方案。随着研究人员继续揭示这一强大过程的秘密,我们可能很快会看到清洁、丰富的能源成为现实。实现atomic fusion(原子融合)的旅程并非没有障碍,但它对人类的承诺是不可忽视的。通过在这一领域投资研发,我们可以为未来几代人铺平通往更加光明、可持续未来的道路。

相关单词

atomic

atomic详解:怎么读、什么意思、用法

fusion

fusion详解:怎么读、什么意思、用法