apsidal motion

简明释义

拱线运动

英英释义

Apsidal motion refers to the precession of the major axis of an elliptical orbit, where the orientation of the ellipse rotates over time due to gravitational perturbations.

椭圆轨道的主轴进动,指的是由于引力扰动导致椭圆的方向随时间旋转的现象。

例句

1.Understanding apsidal motion 椭圆轨道运动 helps scientists determine the gravitational influences of nearby bodies.

理解apsidal motion 椭圆轨道运动有助于科学家确定附近天体的引力影响。

2.The phenomenon of apsidal motion 椭圆轨道运动 can lead to variations in the timing of eclipses.

由于apsidal motion 椭圆轨道运动的现象,日食的时机可能会有所变化。

3.The apsidal motion 椭圆轨道运动 of the comet was calculated to predict its next appearance.

彗星的apsidal motion 椭圆轨道运动被计算出来以预测它的下次出现。

4.Astronomers have observed apsidal motion 椭圆轨道运动 in the orbits of planets around certain stars.

天文学家观察到了某些恒星周围行星的apsidal motion 椭圆轨道运动

5.The study of apsidal motion 椭圆轨道运动 is crucial for understanding the orbits of binary star systems.

apsidal motion 椭圆轨道运动的研究对于理解双星系统的轨道至关重要。

作文

In the study of celestial mechanics, one often encounters various fascinating phenomena that govern the motion of celestial bodies. Among these phenomena is the concept of apsidal motion, which refers to the precession or movement of the major axis of an elliptical orbit. This motion can be observed in the orbits of planets, moons, and even artificial satellites around larger celestial bodies. Understanding apsidal motion is crucial for astronomers and astrophysicists alike, as it plays a significant role in predicting the positions of these bodies over time.To grasp the significance of apsidal motion, it is essential to first understand what an elliptical orbit entails. An ellipse, which is the shape of the orbits of many celestial objects, has two focal points. In the case of planetary motion, one of these foci is occupied by the central body, such as the Sun in our solar system. The closest point in the orbit to this focal point is known as periapsis, while the farthest point is called apoapsis. The line connecting these two points is referred to as the major axis of the ellipse.Over time, due to gravitational interactions with other celestial bodies and relativistic effects, the orientation of this major axis can change. This phenomenon is what we call apsidal motion. For instance, in our solar system, the orbit of Mercury exhibits significant apsidal motion, which was one of the key pieces of evidence that led to the development of Einstein's theory of general relativity. The precise calculation of Mercury's orbit revealed discrepancies that classical physics could not explain, prompting further investigation into the nature of gravity and spacetime.Moreover, apsidal motion is not limited to just one celestial body but can affect multiple bodies within a system. For example, in binary star systems, the gravitational forces exerted by each star can lead to complex apsidal motion patterns, influencing their orbital characteristics. These interactions can result in changes to the timing of eclipses and other observable phenomena, making the study of apsidal motion integral to understanding the dynamics of such systems.In addition to its implications in astronomy, apsidal motion also has practical applications in satellite technology. Engineers and scientists must account for this motion when designing and launching satellites to ensure they maintain their intended orbits over time. By understanding how apsidal motion affects satellite trajectories, they can make more accurate predictions and adjustments, enhancing the functionality of these critical tools.In conclusion, apsidal motion is a vital aspect of celestial mechanics that provides insight into the behavior of orbits and the gravitational interactions between celestial bodies. Its implications stretch from the fundamental understanding of planetary motion to practical applications in modern technology. As we continue to explore the universe, the study of apsidal motion will undoubtedly remain a key area of focus for astronomers and engineers alike, revealing more about the intricate dance of celestial objects in our cosmos.

在天体力学的研究中,人们常常会遇到各种迷人的现象,这些现象支配着天体的运动。在这些现象中,有一个概念叫做近点运动,它指的是椭圆轨道的主轴的进动或运动。这种运动可以在行星、卫星以及甚至人造卫星围绕较大天体的轨道中观察到。理解近点运动对于天文学家和天体物理学家来说至关重要,因为它在预测这些天体随时间变化的位置中发挥着重要作用。要理解近点运动的重要性,首先必须了解什么是椭圆轨道。椭圆是许多天体轨道的形状,它有两个焦点。在行星运动的情况下,其中一个焦点被中央天体占据,例如我们太阳系中的太阳。轨道上离这个焦点最近的点被称为近点,而最远的点称为远点。连接这两个点的直线称为椭圆的主轴。随着时间的推移,由于与其他天体的引力相互作用和相对论效应,这条主轴的方向可能会发生变化。这种现象就是我们所称的近点运动。例如,在我们的太阳系中,水星的轨道表现出显著的近点运动,这是推动爱因斯坦的广义相对论理论发展的关键证据之一。对水星轨道的精确计算揭示了经典物理无法解释的差异,促使人们进一步研究引力和时空的本质。此外,近点运动不仅限于某一个天体,还可以影响系统内的多个天体。例如,在双星系统中,每颗恒星施加的引力可以导致复杂的近点运动模式,从而影响它们的轨道特征。这些相互作用可能会导致日食等可观察现象的时机变化,使得对近点运动的研究成为理解此类系统动态的重要组成部分。除了在天文学上的影响,近点运动在卫星技术中也具有实际应用。当设计和发射卫星时,工程师和科学家必须考虑这种运动,以确保卫星能够在一段时间内保持其预定轨道。通过理解近点运动如何影响卫星轨迹,他们可以做出更准确的预测和调整,从而增强这些关键工具的功能。总之,近点运动是天体力学的一个重要方面,它提供了关于轨道行为和天体之间引力相互作用的深入见解。它的影响从对行星运动的基本理解扩展到现代技术中的实际应用。随着我们继续探索宇宙,近点运动的研究无疑将继续成为天文学家和工程师关注的重点领域,揭示出更多关于我们宇宙中天体复杂舞蹈的信息。

相关单词

apsidal

apsidal详解:怎么读、什么意思、用法

motion

motion详解:怎么读、什么意思、用法