angular radius

简明释义

角半径

英英释义

Angular radius refers to the angle subtended by an object at a given point, typically measured in degrees or radians, representing how large the object appears from that point.

角半径是指在给定点上物体所形成的角度,通常以度或弧度为单位测量,表示从该点看物体的大小。

例句

1.To calculate the angular radius 角半径 of a circular object, you need to know its diameter.

要计算一个圆形物体的angular radius 角半径,你需要知道它的直径。

2.Using the formula, we can find the angular radius 角半径 of the full moon.

使用公式,我们可以找到满月的angular radius 角半径

3.The angular radius 角半径 of the sun is approximately 0.5 degrees as seen from Earth.

从地球上看,太阳的angular radius 角半径大约为0.5度。

4.The telescope was adjusted to measure the angular radius 角半径 of the distant star.

望远镜被调整以测量遥远星星的angular radius 角半径

5.In astronomy, the angular radius 角半径 of a planet can help determine its size from Earth.

在天文学中,行星的angular radius 角半径可以帮助确定其从地球上看起来的大小。

作文

In the world of astronomy and physics, the concept of angular radius plays a pivotal role in understanding the spatial relationships between celestial objects. The term angular radius refers to the angle formed at a given point that subtends an arc on the surface of a sphere. This is crucial for astronomers when they measure the apparent size of stars, planets, and other celestial bodies. For instance, when observing a distant star, its brightness and size are often described in terms of its angular radius, which helps scientists determine how far away it is from Earth. One might wonder why this measurement is so important. The reason lies in the vastness of space, where distances are often incomprehensibly large. Traditional linear measurements become impractical when dealing with light-years and astronomical units. Instead, using angles allows astronomers to make sense of these immense distances. For example, if we know the actual size of a star and its angular radius, we can use trigonometry to calculate its distance from us. This relationship is fundamental in many areas of astrophysics, including the study of exoplanets and the dynamics of galaxies.Moreover, the angular radius can also be used in various applications beyond astronomy. In fields such as optics and engineering, understanding angles and their relationships to physical dimensions is crucial. For instance, in designing lenses or mirrors, knowing the angular radius can help engineers create more efficient optical systems. Similarly, in computer graphics, the concept is applied to render three-dimensional objects on a two-dimensional screen, ensuring that images appear realistic and proportional.The calculation of angular radius is relatively straightforward. It is typically expressed in radians or degrees, depending on the context. To find the angular radius, one must first determine the arc length and the radius of the sphere. The formula is given by: angular radius = arc length / radius. This simple equation highlights the relationship between linear distance and angular measurement, bridging the gap between different domains of science and technology.In conclusion, the concept of angular radius is not only fundamental to the study of astronomy but also has significant implications in various scientific and engineering fields. By understanding how to measure and apply angular radius, we gain insights into the universe's structure and the principles governing light and perception. As technology advances and our ability to observe distant objects improves, the importance of angular radius will only continue to grow, enabling new discoveries and enhancing our understanding of the cosmos.

在天文学和物理学的世界中,angular radius(角半径)这一概念在理解天体之间的空间关系时发挥着关键作用。术语angular radius指的是在给定点形成的角度,该角度在一个球体的表面上截取一个弧。这对于天文学家来说至关重要,因为他们在测量恒星、行星和其他天体的表观大小时常常使用angular radius,这有助于科学家们确定它们距离地球的远近。人们可能会想,这一测量为什么如此重要。原因在于太空的广袤无垠,距离往往是难以理解的巨大。在处理光年和天文单位时,传统的线性测量变得不切实际。相反,使用角度可以让天文学家对这些巨大的距离有更清晰的认识。例如,如果我们知道一颗恒星的实际大小及其angular radius,我们可以利用三角学来计算它与我们的距离。这种关系在许多天体物理学领域中都是基础,包括系外行星的研究和星系的动力学。此外,angular radius还可以在天文学以外的各种应用中使用。在光学和工程等领域,理解角度及其与物理尺寸的关系至关重要。例如,在设计透镜或镜子时,了解angular radius可以帮助工程师创建更高效的光学系统。类似地,在计算机图形学中,这一概念被应用于将三维物体渲染到二维屏幕上,以确保图像看起来真实且成比例。计算angular radius相对简单。它通常用弧度或度数表示,具体取决于上下文。要找到angular radius,首先必须确定弧长和球体的半径。公式为:angular radius = arc length / radius。这个简单的方程突显了线性距离与角度测量之间的关系,架起了科学和技术不同领域之间的桥梁。总之,angular radius的概念不仅是天文学研究的基础,而且在各种科学和工程领域中具有重要意义。通过理解如何测量和应用angular radius,我们可以深入洞察宇宙的结构以及光和感知的基本原理。随着科技的进步和我们观察遥远物体能力的提高,angular radius的重要性只会继续增长,从而推动新的发现并增强我们对宇宙的理解。

相关单词

radius

radius详解:怎么读、什么意思、用法